【題目】如圖,在△ABC和△DEF中,滿足AB=DE,∠B=∠E,如果要判定這兩個(gè)三角形全等,那么添加的條件不正確的是( )

A. ∠A=∠D B. ∠C=∠F C. BC=EF D. AC=DF

【答案】D

【解析】

全等三角形的判定定理有SAS,ASA,AAS,SSS,看看各個(gè)選項(xiàng)是否符合即可.

A.∵在ABCDEF中,

ABCDEF(ASA),正確,故本選項(xiàng)錯(cuò)誤;

B. ∵在ABCDEF中,

ABCDEF(AAS),正確,故本選項(xiàng)錯(cuò)誤;

C. ∵在ABCDEF中,

ABCDEF(SAS),正確,故本選項(xiàng)錯(cuò)誤;

D. 根據(jù)AB=DE,B=E,AC=DF不能推出ABCDEF,錯(cuò)誤,故本選項(xiàng)正確;

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某批發(fā)門市銷售兩種商品,甲種商品每件售價(jià)為300元,乙種商品每件售價(jià)為80元.新年來臨之際,該門市為促銷制定了兩種優(yōu)惠方案:

方案一:買一件甲種商品就贈(zèng)送一件乙種商品;

方案二:按購買金額打八折付款.

某公司為獎(jiǎng)勵(lì)員工,購買了甲種商品20件,乙種商品x(x≥20)件.

(1)分別寫出優(yōu)惠方案一購買費(fèi)用y1(元)、優(yōu)惠方案二購買費(fèi)用y2元)與所買乙種商品x(件)之間的函數(shù)關(guān)系式;

(2)若該公司共需要甲種商品20件,乙種商品40件.設(shè)按照方案一的優(yōu)惠辦法購買了m件甲種商品,其余按方案二的優(yōu)惠辦法購買.請(qǐng)你寫出總費(fèi)用wm之間的關(guān)系式;利用wm之間的關(guān)系式說明怎樣購買最實(shí)惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(2,0),B(0,4),作△BOC,使△BOC△ABO全等,則點(diǎn)C坐標(biāo)為_____________.(點(diǎn)C不與點(diǎn)A重合)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個(gè)長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成4 個(gè)小長方形,然后按圖2的形狀拼成一個(gè)正方形.

(1)2中陰影部分的面積為 ;

(2)觀察圖2,請(qǐng)你寫出式子(m+n)2,(m-n)2,mn之間的等量關(guān)系: ;

(3)x+y=-6,xy=2.75,求x-y的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)將原來400平方米的正方形場(chǎng)地改建成300平方米的長方形場(chǎng)地,且長和寬之比為3∶2.如果把原來正方形場(chǎng)地的鐵柵欄圍墻利用起來圍成新場(chǎng)地的長方形圍墻,那么這些鐵柵欄是否夠用?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠BOPOP上點(diǎn)C,點(diǎn)A(在點(diǎn)C的右邊),李玲現(xiàn)進(jìn)行如下操作:①以點(diǎn)O為圓心,OC長為半徑畫弧,交OB于點(diǎn)D;②以點(diǎn)A為圓心,OC長為半徑畫弧MN,交OA于點(diǎn)M;③以點(diǎn)M為圓心,CD長為半徑畫弧,交弧MN于點(diǎn)E,作射線AE,操作結(jié)果如圖所示,下列結(jié)論不能由上述操作結(jié)果得出的是( ).

A. ∠ACD=∠EAP B. ∠ODC=∠AEM C. OB∥AE D. CD∥ME

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,直線AB、CD相交于點(diǎn)O,∠COE=90°,若∠BOD:∠BOC=1:5.

(1)求∠AOC的度數(shù);

(2)如圖,過點(diǎn)O作OF⊥AB,求∠DOF與∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10)閱讀下列材料:

1)關(guān)于x的方程x2-3x+1=0x≠0)方程兩邊同時(shí)乘以得: ,

2a3+b3=a+b)(a2-ab+b2);a3-b3=a-b)(a2+ab+b2).

根據(jù)以上材料,解答下列問題:

1x2-4x+1=0x≠0),則= ______ , = ______ = ______ ;

22x2-7x+2=0x≠0),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=ax+b與雙曲線y= (x>0)交于A(x1 , y1),B(x2 , y2)兩點(diǎn)(A與B不重合),直線AB與x軸交于P(x0 , 0),與y軸交于點(diǎn)C.
(1)若A,B兩點(diǎn)坐標(biāo)分別為(1,3),(3,y2),求點(diǎn)P的坐標(biāo).
(2)若b=y1+1,點(diǎn)P的坐標(biāo)為(6,0),且AB=BP,求A,B兩點(diǎn)的坐標(biāo).
(3)結(jié)合(1),(2)中的結(jié)果,猜想并用等式表示x1 , x2 , x0之間的關(guān)系(不要求證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案