【題目】我市創(chuàng)全國衛(wèi)生城市,某街道積極響應(yīng),決定在街道內(nèi)的所有小區(qū)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買4個(gè)垃圾箱比購買5個(gè)溫馨提示牌多350元,垃圾箱的單價(jià)是溫馨提示牌單價(jià)的3倍.
求溫馨提示牌和垃圾箱的單價(jià)各是多少元?
如果該街道需購買溫馨提示牌和垃圾箱共3000個(gè).
求購買溫馨提示牌和垃圾箱所需費(fèi)用元與溫馨提示牌的個(gè)數(shù)x的函數(shù)關(guān)系式;
若該街道計(jì)劃費(fèi)用不超過35萬元,而且垃圾箱的個(gè)數(shù)不少于溫馨提示牌的個(gè)數(shù)的倍,求有幾種可供選擇的方案?并找出資金最少的方案,求出最少需多少元?
【答案】(1) 50元和150元;(2)①;②見解析.
【解析】
(1)根據(jù)購買4個(gè)垃圾箱比購買5個(gè)溫馨提示牌多350元,垃圾箱的單價(jià)是溫馨提示牌單價(jià)的3倍,可以列出相應(yīng)的一元一次方程,從而可以解答本題;
(2)①根據(jù)題意可以寫出w與x的函數(shù)關(guān)系式;
②根據(jù)題意可以得到關(guān)于x的不等式組,從而可以求得x的取值范圍,再根據(jù)一次函數(shù)的性質(zhì)即可得到所需資金最少的方案,并求出最少需要多少元.
解:設(shè)溫馨提示牌的單價(jià)為a元,
解得:,
則,
答:溫馨提示牌、垃圾箱的單價(jià)分別為50元和150元;
由題意可得,
,
即購買溫馨提示牌和垃圾箱所需費(fèi)用元與溫馨提示牌的個(gè)數(shù)x的函數(shù)關(guān)系式是:;
由題意得,
,
解得:,
為整數(shù),
共有201種可供選擇的方案,
,w隨x的增大而減小,
當(dāng)時(shí),w取得最小值,此時(shí)元,,
答:有201種可供選擇的方案,其中購買溫馨提示牌1200個(gè),垃圾桶1800個(gè)時(shí)所需資金最少,最少為330000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是⊙ 的直徑, 是⊙ 的弦,過點(diǎn) 的切線交 的延長線于點(diǎn) ,且 .
(1)求 的度數(shù);
(2)若 =3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系內(nèi),頂點(diǎn)的坐標(biāo)分別為A(﹣1,5),B(﹣4,1),C(﹣1,1)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到△AB′C′,點(diǎn)B,C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)B′,C′,
(1)畫出△AB′C′;
(2)寫出點(diǎn)B′,C′的坐標(biāo);
(3)求出在△ABC旋轉(zhuǎn)的過程中,點(diǎn)C經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù) ,當(dāng) 時(shí)對(duì)應(yīng)的函數(shù)圖像位于 軸的下方,當(dāng) 時(shí)對(duì)應(yīng)的函數(shù)圖像位于 軸的上方,則 的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下列證明過程,并在括號(hào)中填上理論依據(jù).
如圖,已知AC⊥AE垂足為A,BD⊥BF垂足為B,∠1=35°,∠2=35°.
證明:AC∥BD; AE∥BF.
證明:∵∠1=∠2=35°,
∴ ∥ ( )
∵AC⊥AE,BD⊥BF,
∴∠ =∠ =90°
又∵∠1=∠2=35°,
∴∠ =∠
∴EA∥BF( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中, BD是∠ABC的平分線,過點(diǎn)C作CE⊥BD,交 BD的延長線于點(diǎn)E,∠ABC=60°,∠ECD=15°.
(1)直接寫出∠ADB的度數(shù)是_______;
(2)求證:BD=AB;
(3)若AB=2,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營某種品牌的玩具,購進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場調(diào)查發(fā)現(xiàn):在一段時(shí)間內(nèi),當(dāng)銷售單價(jià)是40元時(shí),銷售量是600件,而銷售單價(jià)每漲1元,就會(huì)少售出10件玩具.若商場要獲得10000元銷售利潤,該玩具銷售單價(jià)應(yīng)定為多少元?售出玩具多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,E是AD中點(diǎn),EF⊥BC于點(diǎn)F,BC=5,EF=3.
(1)若AB=DC,則四邊形ABCD的面積S=__;
(2)若AB>DC,則此時(shí)四邊形ABCD的面積S′__S(用“>”或“=”或“<”填空).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com