精英家教網 > 初中數學 > 題目詳情
如圖,五邊形ABCDE為一塊土地的示意圖.四邊形AFDE為矩形,AE=130米,ED=100米,BC截∠F交AF、FD分別于點B、C,且BF=FC=10米.
(1)現(xiàn)要在此土地上劃出一塊矩形土地NPME作為安置區(qū),且點P在線段BC上,若設PM的長為x米,矩形NPME的面積為y平方米,求y與x的函數關系式,并求當x為何值時,安置區(qū)的面積y最大,最大面積為多少?
(2)因三峽庫區(qū)移民的需要,現(xiàn)要在此最大面積的安置區(qū)內安置30戶移民農戶,每戶建房占地100平方米,政府給予每戶4萬元補助,安置區(qū)內除建房外的其余部分每平方米政府投入100元作為基礎建設費,在五邊形ABCDE這塊土地上,除安置區(qū)外的部分每平方米政府投入200元作為設施施工費.為減輕政府的財政壓力,決定鼓勵一批非安置戶到此安置區(qū)內建房,每戶建房占地120平方米,但每戶非安置戶應向政府交納土地使用費3萬元.為保護環(huán)境,建房總面積不得超過安置區(qū)面積的50%.若除非安置戶交納的土地使用費外,政府另外投入資精英家教網金150萬元,請問能否將這30戶移民農戶全部安置?并說明理由.
分析:(1)要求矩形的面積就應該知道矩形的長和寬,可以延長MP交AF于點H,用PH表示出PM和PN,然后根據矩形的面積=長×寬,得出函數關系式,然后根據PH的取值范圍和函數的性質,得出面積最大值.
(2)本題的不等式關系為:非安置戶的建房占地面積+安置戶的建房占地面積≤安置區(qū)面積×50%;安置戶的補助費+安置戶的基礎建設費+安置戶的設施施工費≤150萬元+非安置戶繳納的土地使用費.以此來列出不等式,求出自變量的取值范圍.
解答:精英家教網解:(1)延長MP交AF于點H,則△BHP為等腰直角三角形.
BH=PH=130-x
DM=HF=10-BH=10-(130-x)=x-120
則y=PM•EM=x•[100-(x-120)]=-x2+220x
由0≤PH≤10
得120≤x≤130因為拋物線y=-x2+220x的對稱軸為直線x=110,開口向下.
所以,在120≤x≤130內,
當x=120時,y=-x2+220x取得最大值.
其最大值為y=12000(㎡)

(2)設有a戶非安置戶到安置區(qū)內建房,政府才能將30戶移民農戶全部安置.
由題意,得
30×100+120a≤12000×50%
30×4+(12000-30×100-120a)×0.01+
90+100
2
×10×0.02≤150+3a
解得18
17
21
≤a≤25
因為a為整數.
所以,到安置區(qū)建房的非安置戶至少有19戶且最多有25戶時,政府才能將30戶移民農戶全部安置;否則,政府就不能將30戶移民農戶全部安置.
點評:本題考查了二次函數和一元一次不等式的綜合應用,讀清題意,找準等量關系是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,矩形ABCD的長,寬分別為
3
2
和1,且OB=1,點E(
3
2
,2),連接AE,ED.
(1)求經過A,E,D三點的拋物線的表達式;
(2)若以原點為位似中心,將五邊形AEDCB放大,使放大后的五邊形的邊長是原五邊形對應邊長的3倍,請在下圖網格中畫出放大后的五邊形A′E′D′C′B′;
(3)經過A′,E′,D′三點的拋物線能否由(1)中的拋物線平移得到?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

20、如圖,四邊形ABCD的內角和為2×180°=360°,五邊形ABCDE的內角和為3×180°=540°,…由此可見n邊形的內角和為
(n-2)×180
度,外角和是
360
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在?ABCD中,AB=6cm,AD=AC=5cm.點P由C出發(fā)沿CA方向勻速運動,速度為1cm/s;同時,線段EF由AB出發(fā)沿AD方向勻速運動,速度為1cm/s,交AC于Q,連接PE、PF.若設運動時間為t(s)(0<t<5).解答下列問題:精英家教網
(1)當t為何值時,PE∥CD?
(2)試判斷三角形PEF形狀,并請說明理由;
(3)當0<t<2.5時.
①在上述運動過程中,五邊形ABFPE的面積是否為定值?如果是,求出五邊形ABFPE的面積;如果不是,請說明理由;
②試求△PEQ的面積的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,矩形ABCD的長、寬分別為3和2,OB=2,點E的坐標為(3,4)連接AE、ED.
(1)求經過A、E、D三點的拋物線的解析式.
(2)以原點為位似中心,將五邊形ABCDE放大.
①若放大后的五邊形的邊長是原五邊形對應邊長的2倍,請在網格中畫出放大后的五邊形A2B2C2D2E2,并直接寫出經過A2、D2、E2三點的拋物線的解析式:
 
;
②若放大后的五邊形的邊長是原五邊形對應邊長的k倍,請你直接寫出經過Ak、Dk、Ek三點的拋物線的解析式:
 
(用含k的字母表示).

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形ABCD的內角和為2×180°=360°,五邊形ABCDE的內角和為3×180°=540°,…由此可見:
(1)六邊形的內角和為
720
720
度;
(2)n邊形的內角和為
(n-2)×180
(n-2)×180
度.

查看答案和解析>>

同步練習冊答案