如圖1,在梯形ABCD中,AD∥BC,且BC=12cm,AD=15cm,動(dòng)點(diǎn)Q由點(diǎn)B沿BC向點(diǎn)C移動(dòng),1秒鐘后動(dòng)點(diǎn)P由點(diǎn)A沿AD向點(diǎn)D移動(dòng)
(1)若動(dòng)點(diǎn)P的速度比動(dòng)點(diǎn)Q的速度大1厘米/秒,且動(dòng)點(diǎn)Q到達(dá)C時(shí),動(dòng)點(diǎn)P 恰好也到達(dá)D.試求動(dòng)點(diǎn)P、Q的速度.
(2)若動(dòng)點(diǎn)P的速度為5厘米/秒,動(dòng)點(diǎn)Q的速度為3厘米/秒,在運(yùn)動(dòng)過(guò)程中(P與A、D不重合時(shí)),AQ與BP交于K,CP與DQ交于N
①當(dāng)動(dòng)點(diǎn)Q到達(dá)BC中點(diǎn)時(shí),過(guò)K作KM∥AD交AB于M,求KM的長(zhǎng);(如圖2)
②在這運(yùn)動(dòng)過(guò)程中,KN是否會(huì)與AD平行?若會(huì),請(qǐng)求出此時(shí)為P點(diǎn)出發(fā)后幾秒?若不會(huì),請(qǐng)說(shuō)明理由.(如圖3)精英家教網(wǎng)
分析:(1)首先設(shè)動(dòng)點(diǎn)Q的速度為x厘米/秒,根據(jù)題意即可得方程:
12
x
=
15
x+1
+1
,解此方程即可求得答案,注意分式方程需檢驗(yàn);
(2)①由動(dòng)點(diǎn)Q到達(dá)BC中點(diǎn),即可求得BQ與AP的值,又由MK∥AD∥BC,根據(jù)平行線分線段成比例定理,即可求得MK的值;
②首先設(shè)點(diǎn)P點(diǎn)出發(fā)后t秒時(shí),KN∥AD,然后根據(jù)平行線分線段成比例定理與比例的性質(zhì),即可得方程
3(t+1)
5t
=
12-3(t+1)
15-5t
’又由此方程無(wú)解,即可證得KN不會(huì)平行于AD.
解答:解:(1)設(shè)動(dòng)點(diǎn)Q的速度為x厘米/秒,
根據(jù)題意得:
12
x
=
15
x+1
+1
,
解得:x1=2,x2=-6(不合題意舍去)
經(jīng)檢驗(yàn)x=2是原方程根,
∴動(dòng)點(diǎn)Q速度為2厘米/秒,動(dòng)點(diǎn)P速度為3厘米/秒.

(2)①當(dāng)BQ=
1
2
BC=6cm時(shí),AP=5×(6÷3-1)=5cm,
由MK∥AD∥BC,
BK
KP
=
BQ
AP
=
6
5
,
MK
AP
=
BK
BP
=
6
11
,
∴MK=
30
11
cm;
②設(shè)點(diǎn)P點(diǎn)出發(fā)后t秒時(shí),KN∥AD,
QK
KA
=
BQ
AP
=
3(t+1)
5t
,
QN
ND
=
CQ
DP
=
12-3(t+1)
15-5t
,
若KN∥AD,則
3(t+1)
5t
=
12-3(t+1)
15-5t

解得:
t+1
t
=1
此方程無(wú)解,
∴KN不會(huì)平行于AD.
點(diǎn)評(píng):此題考查了平行線分線段成比例定理,分式方程的解法,以及比例的性質(zhì)等知識(shí).此題綜合性較強(qiáng),難度較大,解題的關(guān)鍵是注意比例的性質(zhì)與比例變形,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖1,在梯形ABCD中AD∥BC,對(duì)角線AC,BD交于點(diǎn)P,則s△PAB=S△PDC,請(qǐng)你用梯形對(duì)角線的這一特殊性質(zhì),解決下面問(wèn)題.
在圖2中,點(diǎn)E是△ABC中AB邊上的任意一點(diǎn),且AE≠BE,過(guò)點(diǎn)E畫一條直線,把△ABC分成面積相等的兩部分,保留作圖痕跡,并簡(jiǎn)要說(shuō)明你的方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB,AC上,且G,F(xiàn)分別是AB,AC的中點(diǎn).
精英家教網(wǎng)
(1)求等腰梯形DEFG的面積;
(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個(gè)單位的速度沿BC方向向右運(yùn)動(dòng),直到點(diǎn)D與點(diǎn)C重合時(shí)停止.設(shè)運(yùn)動(dòng)時(shí)間為x秒,運(yùn)動(dòng)后的等腰梯形為DEF′G′(如圖2).
探究1:在運(yùn)動(dòng)過(guò)程中,四邊形BDG′G能否是菱形?若能,請(qǐng)求出此時(shí)x的值;若不能,請(qǐng)說(shuō)明理由;
探究2:設(shè)在運(yùn)動(dòng)過(guò)程中△ABC與等腰梯形DEFG重疊部分的面積為y,求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖,已知:AD是△ABC中BC邊的中線,則S△ABD=S△ACD,依據(jù)是
等底等高的三角形面積相等

規(guī)定;若一條直線l把一個(gè)圖形分成面積相等的兩個(gè)圖形,則稱這樣的直線l叫做這個(gè)圖形的等積直線.根據(jù)此定義,在圖1中易知直線為△ABC的等積直線.
(1)如圖2,在矩形ABCD中,直線l經(jīng)過(guò)AD,BC邊的中點(diǎn)M、N,請(qǐng)你判斷直線l是否為該矩形的等積直線
(填“是”或“否”).在圖2中再畫出一條該矩形的等積直線.(不必寫作法)
(2)如圖3,在梯形ABCD中,直線l經(jīng)過(guò)上下底AD、BC邊的中點(diǎn)M、N,請(qǐng)你判斷直線l是否為該梯形的等積直線
(填“是”或“否”).
(3)在圖3中,過(guò)M、N的中點(diǎn)O任作一條直線PQ分別交AD,BC于點(diǎn)P、Q,如圖4所示,猜想PQ是否為該梯形的等積直線?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黑河)如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
(1)如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD,點(diǎn)M、N分別在AD、CD上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請(qǐng)寫出猜想,并給予證明.
(2)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長(zhǎng)線上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2013•樂(lè)山)閱讀下列材料:
如圖1,在梯形ABCD中,AD∥BC,點(diǎn)M,N分別在邊AB,DC上,且MN∥AD,記AD=a,BC=b.若
AM
MB
=
m
n
,則有結(jié)論:MN=
bm+an
m+n

請(qǐng)根據(jù)以上結(jié)論,解答下列問(wèn)題:
如圖2,圖3,BE,CF是△ABC的兩條角平分線,過(guò)EF上一點(diǎn)P分別作△ABC三邊的垂線段PP1,PP2,PP3,交BC于點(diǎn)P1,交AB于點(diǎn)P2,交AC于點(diǎn)P3
(1)若點(diǎn)P為線段EF的中點(diǎn).求證:PP1=PP2+PP3;
(2)若點(diǎn)P為線段EF上的任意位置時(shí),試探究PP1,PP2,PP3的數(shù)量關(guān)系,并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案