【題目】如圖,在寬20米,長(zhǎng)32米的矩形耕地上,修筑同樣寬的三條路(兩條縱向,一條橫向,并且橫向與縱向互相垂直),把這塊耕地分成大小相等的六塊試驗(yàn)田,要使試驗(yàn)田的面積是570平方米,問(wèn)道路應(yīng)該多寬?

【答案】7.1m.

【解析】試題分析:設(shè)道路為x米寬,將所修筑的小路平移到矩形耕地相鄰的兩邊處,則大小不等的六塊花田構(gòu)成一個(gè)新的矩形,長(zhǎng)為(32-2x)米,寬為(20-x)米,根據(jù)矩形面積可列出方程求出x的值,然后將不合題意的舍去即可.

試題解析:設(shè)道路為x米寬,由題意得:(32-2x)20-x=570,整理得:x2﹣36x+35=0

解得:x=1,x=35,

經(jīng)檢驗(yàn)都是原方程的解,但是x=3520,因此不合題意舍去.

答:道路為1m寬.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某淘寶網(wǎng)店銷(xiāo)售臺(tái)燈,成本為每個(gè)元.銷(xiāo)售大數(shù)據(jù)分析表明:當(dāng)每個(gè)臺(tái)燈售價(jià)為元時(shí),平均每月售出個(gè);若售價(jià)每上漲元,其月銷(xiāo)售量就減少個(gè),若售價(jià)每下降元,其月銷(xiāo)售量就增加個(gè).

若售價(jià)上漲,每月能售出________個(gè)臺(tái)燈.

為迎接雙十一,該網(wǎng)店決定降價(jià)促銷(xiāo),在庫(kù)存為個(gè)臺(tái)燈的情況下,若預(yù)計(jì)月獲利恰好為元,求每個(gè)臺(tái)燈的售價(jià).

在庫(kù)存為個(gè)臺(tái)燈的情況下,若預(yù)計(jì)月獲利恰好為元,直接寫(xiě)出每個(gè)臺(tái)燈的售價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,AB=BC=AC=12cm,現(xiàn)有兩點(diǎn)M、N分別從點(diǎn)A. 點(diǎn)B同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),已知點(diǎn)M的速度為1cm/s,點(diǎn)N的速度為2cm/s.當(dāng)點(diǎn)N第一次到達(dá)B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).

(1)點(diǎn)MN運(yùn)動(dòng)_________秒后,AMN是等邊三角形?

(2)點(diǎn)MNBC邊上運(yùn)動(dòng)時(shí),運(yùn)動(dòng)_______秒后得到以MN為底邊的等腰三角形AMN?

(3)MN同時(shí)運(yùn)動(dòng)幾秒后,AMN是直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,A、B 兩點(diǎn)分別位于一個(gè)池塘的兩端,小明想用繩子測(cè)量A、B 間的距離,但繩子不夠長(zhǎng),請(qǐng)你利用三角形全等的相關(guān)知識(shí)幫他設(shè)計(jì)一種方案測(cè)量出A、B間的距離,寫(xiě)出具體的方案,并解釋其中的道理,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】日零時(shí)起,高鐵開(kāi)通,某旅行社為吸引廣大市民組團(tuán)去仙都旅游,推出了如下收費(fèi)標(biāo)準(zhǔn):如果人數(shù)不超過(guò)人,人均旅游費(fèi)用為元,如果人數(shù)超過(guò)人,每增加人,人均旅游費(fèi)用降低元,但人均旅游費(fèi)用不得低于元.

如果某單位組織人參加仙都旅游,那么需支付旅行社旅游費(fèi)用________元;

現(xiàn)某單位組織員工去仙都旅游,共支付給該旅行社旅游費(fèi)用元,那么該單位有多少名員工參加旅游?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一條直線過(guò)點(diǎn),且與拋物線交于,兩點(diǎn),其中點(diǎn)的橫坐標(biāo)是

求這條直線的函數(shù)關(guān)系式及點(diǎn)的坐標(biāo).

軸上是否存在點(diǎn),使得是直角三角形?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

過(guò)線段上一點(diǎn),作軸,交拋物線于點(diǎn),點(diǎn)在第一象限,點(diǎn),當(dāng)點(diǎn)的橫坐標(biāo)為何值時(shí),的長(zhǎng)度最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AB的垂直平分線DEBC的延長(zhǎng)線于F,若∠F30°,DE1,則EF的長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】勾股定理是人類(lèi)最偉大的科學(xué)發(fā)現(xiàn)之一,在我國(guó)古算書(shū)《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出(

A.直角三角形的面積

B.最大正方形的面積

C.較小兩個(gè)正方形重疊部分的面積

D.最大正方形與直角三角形的面積和

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥ABE.

(1)若∠BAC=50°,求∠EDA的度數(shù);

(2)求證:直線AD是線段CE的垂直平分線.

查看答案和解析>>

同步練習(xí)冊(cè)答案