如圖,⊙O的半徑為2,弦AB⊥OC于C,AB=,則OC等于( )

A.
B.
C.1
D.
【答案】分析:利用垂徑定理求得Rt△BOC的直角邊BC的長(zhǎng)度,然后利用勾股定理可以求得OC的長(zhǎng)度.
解答:解:∵AB⊥OC,AB=,
∴AC=BC=AB=;
又∵⊙O的半徑為2,
∴OB=2,
∴在Rt△BOC中,OC==1;
故選C.
點(diǎn)評(píng):本題綜合考查了垂徑定理、勾股定理.此類在圓中涉及弦長(zhǎng)、半徑、圓心角的計(jì)算的問(wèn)題,常把半弦長(zhǎng),半圓心角,圓心到弦距離轉(zhuǎn)換到同一直角三角形中,然后通過(guò)直角三角形予以求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為5,AB=5
3
,C是圓上一點(diǎn),則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點(diǎn)F是BC的中點(diǎn),那么EF2+OF2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為
5
,圓心與坐標(biāo)原點(diǎn)重合,在直角坐標(biāo)系中,把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為格點(diǎn),則⊙O上格點(diǎn)有
 
個(gè),設(shè)L為經(jīng)過(guò)⊙O上任意兩個(gè)格點(diǎn)的直線,則直線L同時(shí)經(jīng)過(guò)第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側(cè),AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O的半徑為5,P是弦MN上的一點(diǎn),且MP:PN=1:2.若PA=2,則MN的長(zhǎng)為
6
2
6
2

查看答案和解析>>

同步練習(xí)冊(cè)答案