如圖,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,點(diǎn)P從點(diǎn)A出發(fā)沿AB方向向點(diǎn)B運(yùn)動(dòng),速度為1cm/s,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿B→C→A方向向點(diǎn)A運(yùn)動(dòng),速度為2cm/s,當(dāng)一個(gè)運(yùn)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)運(yùn)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).

(1)求AC、BC的長(zhǎng);

(2)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(秒),△PBQ的面積為y(cm2),當(dāng)△PBQ存在時(shí),求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)當(dāng)點(diǎn)Q在CA上運(yùn)動(dòng),使PQ⊥AB時(shí),以點(diǎn)B、P、Q為頂點(diǎn)的三角形與△ABC是否相似?請(qǐng)說明理由;

(4)當(dāng)x=5秒時(shí),在直線PQ上是否存在一點(diǎn)M,使△BCM的周長(zhǎng)最小,若存在,求出最小周長(zhǎng);若不存在,請(qǐng)說明理由.

 

【答案】

8,6;0<x≤3;16

【解析】

試題分析: (1)設(shè)AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2

即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm;

(2)①當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),過點(diǎn)Q作QH⊥AB于H,

∵AP=x,∴BP=10﹣x,BQ=2x,∵△QHB∽△ACB,

∴QH=x,y=BP?QH=(10﹣x)?x=﹣x2+8x(0<x≤3),

②當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),過點(diǎn)Q作QH′⊥AB于H′,

∵AP=x,

∴BP=10﹣x,AQ=14﹣2x,∵△AQH′∽△ABC,

,即:,解得:QH′=(14﹣x),

∴y=PB?QH′=(10﹣x)?(14﹣x)=x2x+42(3<x<7);

∴y與x的函數(shù)關(guān)系式為:y=;

(3)∵AP=x,AQ=14﹣x,

∵PQ⊥AB,∴△APQ∽△ACB,

,即:,

解得:x=,PQ=,∴PB=10﹣x=,∴,

∴當(dāng)點(diǎn)Q在CA上運(yùn)動(dòng),使PQ⊥AB時(shí),以點(diǎn)B、P、Q為定點(diǎn)的三角形與△ABC不相似;

(4)存在.

理由:∵AQ=14﹣2x=14﹣10=4,AP=x=5,∵AC=8,AB=10,

∴PQ是△ABC的中位線,∴PQ∥AB,∴PQ⊥AC,

∴PQ是AC的垂直平分線,∴PC=AP=5,

∴當(dāng)點(diǎn)M與P重合時(shí),△BCM的周長(zhǎng)最小,

∴△BCM的周長(zhǎng)為:MB+BC+MC=PB+BC+PC=5+6+5=16.∴△BCM的周長(zhǎng)最小.

考點(diǎn):二次函數(shù)的綜合題

點(diǎn)評(píng):此題將用待定系數(shù)法求二次函數(shù)解析式、動(dòng)點(diǎn)問題和最小值問題相結(jié)合,有較大的思維跳躍,考查了同學(xué)們的應(yīng)變能力和綜合思維能力,是一道好題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案