如圖為拋物線y=ax2+bx+c的圖象,A,B,C為拋物線與坐標(biāo)軸的交點(diǎn),且OA=OC=1,則下列關(guān)系正確的是


  1. A.
    a+b=-1
  2. B.
    a-b=-1
  3. C.
    b<2a
  4. D.
    ac<0
B
分析:由拋物線與y軸相交于點(diǎn)C,就可知道C點(diǎn)的坐標(biāo)(0,1)以及A的坐標(biāo),然后代入函數(shù)式,即可得到答案.
解答:A不正確:由圖象可知,當(dāng)x=1時(shí),y>0,即a+b>0;
B正確:由拋物線與y軸相交于點(diǎn)C,就可知道C點(diǎn)的坐標(biāo)為(0,c),
又因?yàn)镺C=OA=1,
所以C(0,1),A(-1,0),
把它代入y=ax2+bx+c,
即a•(-1)2+b•(-1)+1=0,
即a-b+1=0,
所以a-b=-1.
C不正確:由圖象可知,-<-1,解得b>2a;
D不正確:由圖象可知,拋物線開口向上,所以a>0;又因?yàn)閏=1,所以ac>0.
故選:B.
點(diǎn)評(píng):解決本題的關(guān)鍵在于根據(jù)拋物線與x軸,y軸的交點(diǎn)判斷交點(diǎn)坐標(biāo),然后代入函數(shù)式,推理a,b,c之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點(diǎn)A,交x軸正半軸于點(diǎn)B,交y軸正半軸于點(diǎn)D,精英家教網(wǎng)O為坐標(biāo)原點(diǎn),拋物線上一點(diǎn)C的橫坐標(biāo)為1.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對(duì)稱軸;
(2)⊙P是經(jīng)過A、B兩點(diǎn)的一個(gè)動(dòng)圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);
(3)若線段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請(qǐng)求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點(diǎn)C(0,-2),精英家教網(wǎng)與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動(dòng)點(diǎn),N是線段OC上一動(dòng)點(diǎn),且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時(shí),求點(diǎn)M、N的坐標(biāo);
(3)若平行于x軸的動(dòng)直線與該拋物線交于點(diǎn)P,與線段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-x2+ax+b與x軸交于A、B兩點(diǎn),交y軸于點(diǎn)C,且∠BAC=α,∠ABC=β,ta精英家教網(wǎng)nα-tanβ=2,∠ACB=90°.
①求拋物線的解析式;
②若拋物線頂點(diǎn)為P,求S四邊形ABPC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=
3
9
x2+ax+c(a≠0)與x軸交于點(diǎn)A(-2,0),B(4,0),頂點(diǎn)為D,
(1)求該拋物線的解析式和點(diǎn)D的坐標(biāo);
(2)點(diǎn)E(x,0)是線段OB上的動(dòng)點(diǎn),過點(diǎn)E作EP∥BD,交OD于點(diǎn)P,連接DE.△PED的面積為S,求S與x的函數(shù)關(guān)系式,并求當(dāng)x為何值時(shí),S最大;
(3)在拋物線是否存在一點(diǎn)Q,使以點(diǎn)B、D、E、Q為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出所有符合條件的Q點(diǎn)的坐標(biāo)和此時(shí)x的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案