【題目】如圖,AB是⊙O的直徑,BC交⊙O于點D,E是BD弧上的一點,OE⊥BD于點G,連接AE交BC于點F,AC是⊙O的切線.
(1)求證:∠ACB=2∠EAB;
(2)若cos∠ACB= ,AC=10,求BF的長.
【答案】
(1)證明:連接AD,
∵AB是⊙O的直徑,
∴∠ADB=90°,
∵AC是⊙O的切線,
∴∠CAB=90°,
∴∠C+∠CAD=∠CAD+∠DAB=90°,
∴∠C=∠DAB,
∵OE⊥BD,
∴2 = ,
∴∠BAE= BDA,
∴∠ACB=2∠EAB
(2)解:∵cos∠ACB= ,AC=10,
∴BC=25,
∴AB= =5 ,
∵∠C=∠BAD,∠B=∠B,
∴△ABC∽△DBA,
∴ ,
∴BD= =21,
∵OE⊥BD,
∴BG=DG= ,
∵AD= =2 ,
∵AO=BO,BG=DG,
∴OG= AD= ,
∴GE= ,
∵AD∥GE,
∴ = ,
∴FG= DG= ,
∴BF=BG+FG= + =15.
【解析】(1)連接AD,由AB是⊙O的直徑,得到∠ADB=90°,由AC是⊙O的切線,得到∠CAB=90°,根據(jù)余角的性質(zhì)得到∠C=∠DAB,根據(jù)圓周角定理即可得到結(jié)論;(2)根據(jù)三角函數(shù)的定義得到BC=25,根據(jù)勾股定理得到AB= =5 ,根據(jù)相似三角形的性質(zhì)得到BD= =21,根據(jù)垂徑定理得到BG=DG= ,根據(jù)平行線分線段成比例定理得到 = ,于是得到結(jié)論.
【考點精析】本題主要考查了垂徑定理和切線的性質(zhì)定理的相關(guān)知識點,需要掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條;切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,要是四邊形ABCD成為平行四邊形,則應增加的條件是( )
A.AB=CD
B.∠BAD=∠DCB
C.AC=BD
D.∠ABC+∠BAD=180°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A(0,2),B(1,0),點C為線段AB的中點,將線段BA繞點B按順時針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)經(jīng)過點D.
(1)若該拋物線經(jīng)過原點O,且a=﹣ ,求該拋物線的解析式;
(2)在(1)的條件下,點P(m,n)在拋物線上,且∠POB銳角,滿足∠POB+∠BCD<90°,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】嘉淇準備完成題目:化簡:,發(fā)現(xiàn)系數(shù)“”印刷不清楚.
(1)他把“”猜成3,請你化簡:(3x2+6x+8)–(6x+5x2+2);
(2)他媽媽說:“你猜錯了,我看到該題標準答案的結(jié)果是常數(shù).”通過計算說明原題中“”是幾?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABCO為正方形,A點坐標為(0,2),點P為x軸負半軸上一動點,以AP為直角作等腰直角三角形APD,∠APD=90°(點D落在第四象限)
(1)當點P的坐標為(﹣1,0)時,求點D的坐標;
(2)點P在移動的過程中,點D是否在直線y=x﹣2上?請說明理由;
(3)連接OB交AD于點G,求證:AG=DG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點,E、F分別是線段BM、CM的中點.
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC的頂點B在反比例函數(shù) 的圖象上,AC邊在x軸上,已知∠ACB=90°,∠A=30°,BC=4,則圖中陰影部分的面積是( )
A.12
B.4
C.12-3
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形DEBF是矩形;
(2)若AF平分∠DAB,AE=3,BF=4,求ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com