【題目】如圖,中, ,;向右平移5個單位向上平移4個單位之后得到的圖象

1兩點的坐標分別為 .

2)作出平移之后的圖形.

3)求△ABC的面積.

【答案】1)(3,5)、(1,2);(2)見解析(3)面積為5.5

【解析】

1)根據(jù)C-1,-3),C′4,1),可得平移的方向為向右平移5個單位長度,向上平移4個單位長度,進而得出A′B′兩點的坐標;
2)根據(jù)A′B′C′各頂點的坐標,即可得到ABC平移之后的圖形A′B′C′
3)根據(jù)割補法即可得到ABC的面積.

解:(1)∵C-1,-3),C′4,1),
∴平移的方向為向右平移5個單位長度,向上平移4個單位長度,
A′、B′兩點的坐標分別為A′3,5),B'1,2),
故答案為:(3,5),(12);
2)如圖所示,A′B′C′即為所求;

3ABC的面積為:3×4-×2×3-×1×4-×1×3=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:

二次根式的除法,要化去分母中的根號,需將分子、分母同乘以一個恰當?shù)亩胃剑?/span>

例如:化簡

解:將分子、分母同乘以得:

類比應用:

1)化簡: ;

2)化簡:

拓展延伸:

寬與長的比是的矩形叫黃金矩形.如圖①,已知黃金矩形ABCD的寬AB=1

1)黃金矩形ABCD的長BC= ;

2)如圖②,將圖①中的黃金矩形裁剪掉一個以AB為邊的正方形ABEF,得到新的矩形DCEF,猜想矩形DCEF是否為黃金矩形,并證明你的結(jié)論;

3)在圖②中,連結(jié)AE,則點D到線段AE的距離為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某開發(fā)區(qū)有一塊四邊形的空地ABCD,現(xiàn)計劃在空地上種植草皮,經(jīng)測量∠A90°,AB3mBC12m,CD13m,DA4m,若每平方米草皮需要200元,則要投入_____元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知矩形ABCD,把△BCD沿BD翻折,得△BDGBG,AD所在的直線交于點E,過點DDFBEBC所在直線于點F

1)求證:四邊形DEBF是菱形;

2)若AB8,AD4,求四邊形BEDF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, CDAB,DCB=70°,CBF=20°,EFB=130°,CEF=60°,則∠ACB=______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了貫徹落實健康第一的指導思想,促進學生全面發(fā)展,國家每年都要對中學生進行一次體能測試,測試結(jié)果分“優(yōu)秀”、“良好”、“及格”、“不及格”四個等級,某學校從七年級學生中隨機抽取部分學生的體能測試結(jié)果進行分析,并根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計圖,請根據(jù)這兩幅統(tǒng)計圖中的信息回答下列問題

(1)本次抽樣調(diào)查共抽取多少名學生?
(2)補全條形統(tǒng)計圖.
(3)在扇形統(tǒng)計圖中,求測試結(jié)果為“良好”等級所對應圓心角的度數(shù).
(4)若該學校七年級共有600名學生,請你估計該學校七年級學生中測試結(jié)果為“不及格”等級的學生有多少名?
(5)請你對“不及格”等級的同學提一個友善的建議(一句話即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交ADBC于點E、F,垂足為O

1)如圖1,連接AFCE.求證四邊形AFCE為菱形,并求AF的長;

2)如圖2,動點PQ分別從A、C兩點同時出發(fā),沿AFBCDE各邊勻速運動一周.即點PA→F→B→A停止,點QC→D→E→C停止.在運動過程中,

①已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當A、CP、Q四點為頂點的四邊形是平行四邊形時,求t的值.

②若點PQ的運動路程分別為a、b(單位:cm,ab≠0),已知AC、PQ四點為頂點的四邊形是平行四邊形,求ab滿足的數(shù)量關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】超速行駛是引發(fā)交通事故的主要原因.上周末,小鵬等三位同學在濱海大道紅樹林路段,嘗試用自己所學的知識檢測車速,觀測點設在到公路l的距離為100米的P處.這時,一輛富康轎車由西向東勻速駛來,測得此車從A處行駛到B處所用的時間為3秒,并測得∠APO=60°,BPO=45°,試判斷此車是否超過了每小時80千米的限制速度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線過點A(2,0),B(﹣1,0),與y軸交于點C,且OC=2.則這條拋物線的解析式為(
A.y=x2﹣x﹣2
B.y=﹣x2+x+2
C.y=x2﹣x﹣2或y=﹣x2+x+2
D.y=﹣x2﹣x﹣2或y=x2+x+2

查看答案和解析>>

同步練習冊答案