【題目】在一個(gè)不透明的盒子里裝有紅、黑兩種顏色的球共30只,這些球除顏色外其余完全相同,為了估計(jì)紅球和黑球的個(gè)數(shù),七(1)班的數(shù)學(xué)學(xué)習(xí)小組做了摸球?qū)嶒?yàn).他們將球攪勻后,從盒子里隨機(jī)摸出一個(gè)球記下顏色,再把球放回盒子中,多次重復(fù)上述過(guò)程,得到下表中的一組統(tǒng)計(jì)數(shù)據(jù):
模球的次數(shù) | 50 | 100 | 300 | 500 | 800 | 1000 | 2000 |
摸到紅球的次數(shù) | 14 | 33 | 95 | 155 | 241 | 298 | 602 |
摸到紅球的頻率 | 0.28 | 0.33 | 0.317 | 0.31 | 0.301 | 0.298 | 0.301 |
(1)請(qǐng)估計(jì):當(dāng)次數(shù)足夠大時(shí),摸到紅球的頻率將會(huì)接近______;(精確到0.1)
(2)假如你去摸一次,則估計(jì)摸到紅球的概率為______;
(3)試估算盒子里紅球的數(shù)量為______個(gè),黑球的數(shù)量為______個(gè).
【答案】(1)0.3;(2)0.3;(3)9,21
【解析】
(1)由表中摸球次數(shù)逐漸增大后,摸到紅球的頻率逐漸靠近于0.3可得;
(2)概率接近于(1)得到的頻率;
(3)紅球個(gè)數(shù)=球的總數(shù)×得到的紅球的概率,讓球的總數(shù)減去紅球的個(gè)數(shù)即為黑球的個(gè)數(shù),問(wèn)題得解.
(1)當(dāng)次數(shù)n足夠大時(shí),摸到紅球的頻率將會(huì)接近0.3,
(2)摸到紅球的概率的估計(jì)值為0.3,
(3)估算盒子里紅球的數(shù)量為30×0.3=9個(gè),黑球的個(gè)數(shù)為30-9=21個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,正比例函數(shù)y=ax的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(3,2)
(1)試確定上述正比例函數(shù)和反比例函數(shù)的表達(dá)式;
(2)根據(jù)圖象回答,在第一象限內(nèi),當(dāng)x取何值時(shí),反比例函數(shù)的值大于正比例函數(shù)的值?
(3)點(diǎn)M(m,n)是反比例函數(shù)圖象上的一動(dòng)點(diǎn),其中0<m<3,過(guò)點(diǎn)M作直線MB∥x軸,交y軸于點(diǎn)B;過(guò)點(diǎn)A作直線AC∥y軸交x軸于點(diǎn)C,交直線MB于點(diǎn)D.當(dāng)四邊形OADM的面積為6時(shí),請(qǐng)判斷線段BM與DM的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一家蔬菜公司收購(gòu)到某種綠色蔬菜200噸,準(zhǔn)備加工后進(jìn)行銷(xiāo)售,銷(xiāo)售后獲利的情況如下表所示:
銷(xiāo)售方式 | 粗加工后銷(xiāo)售 | 精加工后銷(xiāo)售 |
每噸獲利(元) | 500 | 800 |
已知該公司的加工能力是:每天能精加工5噸或粗加工15噸,但兩種加工不能同時(shí)進(jìn)行.受季節(jié)等條件的限制,公司必須在一定時(shí)間內(nèi)將這批蔬菜全部加工后銷(xiāo)售完.
(1)如果要求20天剛好加工完200噸蔬菜,則公司應(yīng)安排幾天精加工,幾天粗加工?
(2)如果先進(jìn)行精加工,然后進(jìn)行粗加工.
①試求出銷(xiāo)售利潤(rùn)W元與精加工的蔬菜噸數(shù)m之間的函數(shù)關(guān)系式;
②若要求在不超過(guò)16天的時(shí)間內(nèi),將200噸蔬菜全部加工完后進(jìn)行銷(xiāo)售,則加工這批蔬菜最多獲得多少利潤(rùn)?此時(shí)如何分配加工時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸交于A(-1,0)和B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱軸與x軸交于點(diǎn)E,點(diǎn)D為頂點(diǎn),連接BD、CD、BC.
(1)求證△BCD是直角三角形;
(2)點(diǎn)P為線段BD上一點(diǎn),若∠PCO+∠CDB=180°,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為拋物線上一點(diǎn),作MN⊥CD,交直線CD于點(diǎn)N,若∠CMN=∠BDE,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點(diǎn)E在CD上,將△BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處;點(diǎn)G在AF上,將△ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,有下列結(jié)論:
①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.
其中正確的是__.(把所有正確結(jié)論的序號(hào)都選上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,點(diǎn)在邊上,點(diǎn)在邊上(點(diǎn)、點(diǎn)不與所在線段端點(diǎn)重合),,連接,.射線,延長(zhǎng)交射線于點(diǎn),點(diǎn)在直線上,且.
(1)如圖1所示,點(diǎn)在的延長(zhǎng)線上,求的度數(shù).
(2)若,其它條件不變,當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí),______;當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí),______.(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),得到矩形AEFG,E點(diǎn)正好落在邊CD上,連接BE,BG,且BG交AE于P.
(1)求證:∠CBE=∠BAE;
(2)求證:PG=PB;
(3)若AB=,BC=3,求出BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=4,AB=2,點(diǎn)H、G分別是邊CD、BC上的動(dòng)點(diǎn).連接AH、HG,點(diǎn)E為AH的中點(diǎn),點(diǎn)F為GH的中點(diǎn),連接EF則EF的最大值與最小值的差為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(操作發(fā)現(xiàn))三角形三個(gè)頂點(diǎn)與重心的連線段,將該三角形面積三等分.
(1)如圖①:中,中線、、相交于點(diǎn).求證:.
(提出問(wèn)題)如圖②,探究在四邊形中,是邊上任意一點(diǎn),與和的面積之間的關(guān)系.
(2)為了解決這個(gè)問(wèn)題,我們可以先從一些簡(jiǎn)單的、特殊的情形入手:
如圖③,當(dāng)時(shí),探求與和之間的關(guān)系,寫(xiě)出求解過(guò)程.
(問(wèn)題解決)
(3)推廣,當(dāng)(表示正整數(shù))時(shí),直接寫(xiě)出與和之間的關(guān)系:____________.
(4)一般地,當(dāng)時(shí),與和之間的關(guān)系式為:____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com