【題目】如圖,平行四邊形ABCD中,M,N分別為邊BC,CD的中點,且∠MAN=∠ABC,則的值是______

【答案】

【解析】

延長AMDC的延長線交于點E,先證明ABM≌△ECM,得AMAE的關系,ABENED的關系,再證明EAN∽△EDA,由相似三角形比例線段便可得結論.

解:延長AMDC的延長線交于點E

四邊形ABCD為平行四邊形,

ABCD,AB//CD,∠B=∠D,

B=∠MAN

ECM=∠B=∠MAN=∠D,

MBC的中點,NCD的中點,

BMCMCNDN,

ABMECM中,

,

∴△ABM≌△ECMASA),

ABCE,AMEM,

AE2AMENAB,ED2AB,

EAN=∠D,∠E=∠E

∴△EAN∽△EDA,

,即EA2EDEN

,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了解某縣建檔立卡貧困戶對精準扶貧政策落實的滿意度,現(xiàn)從全縣建檔立卡貧困戶中隨機抽取了部分貧困戶進行了調(diào)查(把調(diào)查結果分為四個等級:A級:非常滿意:B級滿意;C級:基本滿意:D級:不滿意),并將調(diào)查結果繪制成如兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中的信息解決下列問題:

1)本次抽樣調(diào)查測試的建檔立卡貧困戶的總戶數(shù)是   ;

2)圖①中,∠α的度數(shù)是   ,并把圖②條形統(tǒng)計圖補充完整;

3)某縣建檔立卡貧困戶有10000戶,如果全部參加這次滿意度調(diào)查,請估計非常滿意的戶數(shù)約為多少戶?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點坐標是.當把坐標系繞點順時針選擇30°時,點在旋轉(zhuǎn)后的坐標系中的坐標是____;當把坐標系繞點逆時針選擇30°時,點在旋轉(zhuǎn)后的坐標系中的坐標是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖正比例函數(shù)yk1x與反比例函數(shù)y的圖象相交于AB兩點,ACx軸于點C,CDABy軸于點D,連接AD、BD,若SABD6,則下列結論正確的是( 。

A.k1=﹣6B.k1=﹣3C.k2=﹣6D.k2=﹣12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AQBN、CN、DQ分別是∠DAB、∠ABC、∠BCD、∠CDA的平分線,AQBN相交于點PCNDQ相交于點M,判斷四邊形MNPQ的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BC是坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是45°60°

1)求燈桿CD的高度;

2)求AB的長度(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解我市某中學書香校園的建設情況,在該校隨機抽取了50名學生,調(diào)查了解他們一周閱讀課外書籍的時間,并將調(diào)查結果繪制成如圖所示的頻數(shù)分布直方圖(每小組的時間包含最小值,不包含最大值),根據(jù)圖中信息估計該校1500名學生中,一周課外閱讀時間不少于4小時的人數(shù)約為(

A.300B.600C.900D.1200

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校組織了一次體育測試,測試項目有A立定跳遠、B擲實心球、C仰臥起坐D“100米跑、E“800米跑.規(guī)定:每名學生測試三項,其中A、B為必測項目,第三項在C、DE中隨機抽取,每項10分(成績均為整數(shù)且不低于0分).

1)完成A、B必測項目后,用列表法,求甲、乙兩同學第三項抽取不同項目的概率;

2)某班有6名男生抽到了E“800米跑項目,他們的成績分別(單位:分)為:x,6,7,8,8,9

①已知這組成績的平均數(shù)和中位數(shù)相等,且x不是這組成績中最高的,則x=

②該班學生丙因病錯過了測試,補測抽到了E“800米跑項目,加上丙同學的成績后,發(fā)現(xiàn)這組成績的眾數(shù)與中位數(shù)相等,但平均數(shù)比原來的平均數(shù)小,則丙同學“800米跑的成績?yōu)槎嗌伲浚?/span>

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一個矩形紙片放置在平面直角坐標系中,點,點,點EF分別在邊,上.沿著折疊該紙片,使得點A落在邊上,對應點為,如圖①.再沿折疊,這時點E恰好與點C重合,如圖②.

(Ⅰ)求點C的坐標;

(Ⅱ)將該矩形紙片展開,再折疊該矩形紙片,使點O與點F重合,折痕與相交于點P,展開矩形紙片,如圖③.

①求的大;

②點M,N分別為,上的動點,當取得最小值時,求點N的坐標(直接寫出結果即可).

查看答案和解析>>

同步練習冊答案