如圖,直線與坐標軸分別交于點A、B,與直線y=x交于點C.在線段OA上,動點Q以每秒1個單位長度的速度從點O出發(fā)向點A做勻速運動,同時動點P從點A出發(fā)向點O做勻速運動,當點P、Q其中一點停止運動時,另一點也停止運動.分別過點P、Q作x軸的垂線,交直線AB、OC于點E、F,連接EF.若運動時間為t秒,在運動過程中四邊形PEFQ總為矩形(點P、Q重合除外).

(1)求點P運動的速度是多少?
(2)當t為多少秒時,矩形PEFQ為正方形?
(3)當t為多少秒時,矩形PEFQ的面積S最大?并求出最大值.
解:(1)∵直線與坐標軸分別交于點A、B,
∴x=0時,y=4;y=0時,x=8。∴BO=4,AO=8!。
當t秒時,QO=FQ=t,則EP=t,
∵EP∥BO,∴△ABO∽△ARP!,即。
∴AP=2t。
∵動點Q以每秒1個單位長度的速度從點O出發(fā)向點A做勻速運動,
∴點P運動的速度是每秒2個單位長度。
(2)∵當OP=OQ時,PE與QF重合,此時t=,當點P、Q其中一點停止運動時,另一點也停止運動,
∴分0<t<<t≤4兩種情況討論:
如圖1,當0<t<。即點P在點Q右側(cè)時,若PQ=PE,矩形PEFQ為正方形,

∵OQ=FQ=t,PA=2t,
∴QP=8-t-2t=8-3t。
∴8-3t=t。
解得:t=2。
如圖2,當<t≤4,即點P在點Q左側(cè)時,若PQ=PE,矩形PEFQ為正方形,∵OQ=t,PA=2t,∴OP=8-2t。


。
解得:t=4。
∴當t為2秒或4秒時,矩形PEFQ為正方形。
(3)同(2)分0<t<<t≤4兩種情況討論:
如圖1,當0<t<時,Q在P點的左邊
∵OQ=t,PA=2t,∴QP=8-t-2t=8-3t,
。
∴當t=時,S的最大值為,
如圖2,當<t≤4時,Q在P點的右邊,
∵OQ=t,PA=2t,∴。
。
∵當<t≤4時,S隨t的增大而增大,∴t=4時,S的最大值為:3×42﹣8×4=16。
綜上所述,當t=4時,S的最大值為:16。

試題分析:(1)根據(jù)直線與坐標軸分別交于點A、B,得出A,B點的坐標,再利用EP∥BO,得出,據(jù)此可以求得點P的運動速度。
(2)當PQ=PE時,以及當PQ=PE時,矩形PEFQ為正方形,分別求出即可。
(3)根據(jù)(2)中所求得出S與t的函數(shù)關系式,從而利用二次函數(shù)性質(zhì)求出即可。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,曲線是函數(shù)在第一象限內(nèi)的圖象,拋物線是函數(shù)的圖象.點)在曲線上,且都是整數(shù).

(1)求出所有的點;
(2)在中任取兩點作直線,求所有不同直線的條數(shù);
(3)從(2)的所有直線中任取一條直線,求所取直線與拋物線有公共點的概率.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知△ABC中,邊BC的長與BC邊上的高的和為20.
(1)寫出△ABC的面積y與BC的長x之間的函數(shù)關系式,并求出面積為48時BC的長;
(2)當BC多長時,△ABC的面積最大?最大面積是多少?
(3)當△ABC面積最大時,是否存在其周長最小的情形?如果存在,請說出理由,并求出其最小周長;如果不存在,請給予說明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:關于x的二次函數(shù)(a>0),點A(n,y1)、B(n+1,y2)、C(n+2,y3)都在這個二次函數(shù)的圖象上,其中n為正整數(shù).
(1)y1=y2,請說明a必為奇數(shù);
(2)設a=11,求使y1≤y2≤y3成立的所有n的值;
(3)對于給定的正實數(shù)a,是否存在n,使△ABC是以AC為底邊的等腰三角形?如果存在,求n的值(用含a的代數(shù)式表示);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,則m的值是
A.-8B.8C.±8D.6

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)(a、b、c為常數(shù)且a≠0)中的x與y的部分對應值如下表:
x
﹣3
﹣2
﹣1
0
1
2
3
4
5
y
12
5
0
﹣3
﹣4
﹣3
0
5
12
給出了結論:
(1)二次函數(shù)有最小值,最小值為﹣3;
(2)當時,y<0;
(3)二次函數(shù)的圖象與x軸有兩個交點,且它們分別在y軸兩側(cè).
則其中正確結論的個數(shù)是
A.3      B.2      C.1      D.0

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,矩形的長和寬分別是4和3,等腰三角形的底和高分別是3和4,如果此三角形的底和矩形的寬重合,并且沿矩形兩條寬的中點所在的直線自右向左勻速運動至等腰三角形的底與另一寬重合.設矩形與等腰三角形重疊部分(陰影部分)的面積為y,重疊部分圖形的高為x,那么y關于x的函數(shù)圖象大致應為
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

(2013年浙江義烏3分)如圖,拋物線y=ax2+bx+c與x軸交于點A(1,0),頂點坐標為(1,n),與y軸的交點在(0,2)、(0,3)之間(包含端點),則下列結論:
①當x>3時,y<0;②3a+b>0;③;④3≤n≤4中,
正確的是【   】
A.①②B.③④C.①④D.①③

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)的圖象的頂點坐標是【   】
A.(1,3)B.(,3)C.(1,D.(,

查看答案和解析>>

同步練習冊答案