【題目】如圖,從熱氣球C上測得兩建筑物AB底部的俯角分別為30°60度.如果這時氣球的高度CD90米.且點A、D、B在同一直線上,求建筑物A、B間的距離.

【答案】

【解析】

試題在Rt△ACD中,利用三邊關系即可得到AD的長,在Rt△BCD中,根據(jù)正切函數(shù)求出鄰邊BD后,相加求和即可.

試題解析:由已知,得∠ECA=30°∠FCB=60°,CD=90EF∥AB,CD⊥AB于點D,∴∠A=∠ECA=30°,∠B=∠FCB=60°.在Rt△ACD中,∠CDA=90°,∠A=30°,∴AD=CD=,在Rt△BCD中,∠CDB=90°,tanB=,∴DB===∴AB=AD+BD=+=

答:建筑物AB間的距離為米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,外一點,過點的兩條切線,切點分別為.若,則點叫做的切角點.

(1)如圖②,的半徑是1,點O到直線的距離為2.若點的切角點,且點在直線上,請用尺規(guī)作出點;(保留作圖痕跡,不寫作法)

(2)如圖③,在中,,,,的內(nèi)切圓.若點的切角點,且點的邊上,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:

(1)若設每件降價x元、每星期售出商品的利潤為y元,請寫出yx的函數(shù)關系式,并求出自變量x的取值范圍;

(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,AC為對角線,點EAC上一點,連接EB,ED.

(1)求證:△BEC≌△DEC

(2)延長BEAD于點F,當∠BED120°時,求∠EFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過三個點A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.

(1)當y1﹣y2=4時,求m的值;

(2)如圖,過點B、C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若三角形PBD的面積是8,請寫出點P坐標(不需要寫解答過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,PBC邊上一動點(不與B,C重合),DEAPE

(1)試說明△ADE∽△PAB;

(2)若PAxDEy,請寫出yx之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學問題:如何計算平面直角坐標系中任意兩點之間的距離?

探究問題:

為解決上面的問題,我們從最簡單的問題進行研究.

探究一:在圖1中,已知線段AB,A(﹣20),B03),寫出線段AO的長,BO的長,所以線段AB的長為多少;把RtAOB向右平移3個單位,再向上平移2個單位,得到RtCDE,寫出RtCDE的頂點坐標CDE,此時線段CD的長為多少,DE的長為多少,所以線段CE的長為多少.

探究二:在圖2中,已知線段AB的端點坐標為Aa,b),Bc,d),求出圖中AB的長(用含a,b,cd的代數(shù)式表示,不必證明).

歸納總結:無論線段AB處于直角坐標系中的哪個位置,當其端點坐標為Ax1y1),Bx2,y2)時線段AB的長為多少(用含x1y1,x2,y2的代數(shù)式表示,不必證明).

拓展與應用:

運用在圖3中,一次函數(shù)y=﹣x+3與反比例函數(shù)y=的圖象交點為A、B,交點的坐標分別是A1,2),B2,1).

①求線段AB的長;

②若點Px軸上動點,求PA+PB的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個各位數(shù)字都不為0的三位正整數(shù)N,現(xiàn)從它的百位、十位、個位上的數(shù)字中任意選擇兩個數(shù)字組成兩位數(shù)若所有這些兩位數(shù)的和等于這個三位數(shù)本身,則稱這個三位數(shù)為本原數(shù)”例如:132,選擇百位數(shù)字1和十位數(shù)字3所組成的兩位數(shù)為:13和31;選擇百位數(shù)字1和個位數(shù)字2所組成的兩位數(shù)為:12和21;選擇十位數(shù)字3和個位數(shù)字2所組成的兩位數(shù)為:32和23,因為13+31+12+21+32+23=132,所以132是“本原數(shù)”

(1)判斷123是不是“本原數(shù)”?請說明理由;

(2)一個三位正整數(shù),若它的十位數(shù)字等于百位數(shù)字與個位數(shù)學的和,則稱這樣的三位數(shù)為“和中數(shù)”.若一個各位數(shù)字都不為0的“和中數(shù)”是“本原數(shù)”,求z與x的函數(shù)關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,連接AC.過點B作⊙O的切線,交AC的延長線于點D,在AD上取一點E,使AE=AB,連接BE,交⊙O于點F.

請補全圖形并解決下面的問題:

(1)求證:∠BAE=2∠EBD;

(2)如果AB=5,sin∠EBD=.求BD的長.

查看答案和解析>>

同步練習冊答案