如圖,矩形OABC的長OA=
3
,寬OC=1,將△AOC沿AC翻折得△APC.
(1)填空:∠PCB=
30
30
度,P點(diǎn)坐標(biāo)為
3
2
3
2
3
2
,
3
2

(2)若P、A兩點(diǎn)在拋物線y=-
4
3
x2+bx+c
上,求b,c的值;
(3)若直線y=kx+m平行于CP,且于(2)中的拋物線有且只有一個(gè)交點(diǎn),求k,m的值;
(4)在(2)中拋物線CP段(不包括C,P點(diǎn))上,是否存在一點(diǎn)M,使得四邊形MCAP的面積最大?若存在求此時(shí)M的坐標(biāo);若不存在,請說明理由.
分析:(1)在直角△OAC中,根據(jù)三角函數(shù)就可以求出∠CAO的度數(shù),以及∠OCA的度數(shù).而∠PCA=∠OCA,∠BCA=∠CAO,則∠PCB就可以求出.在直角△PCG中,根據(jù)三角函數(shù)可以求得CG,PG的長,從而得到P的坐標(biāo).
(2)P、A兩點(diǎn)的坐標(biāo)容易得到,根據(jù)待定系數(shù)法就可以求出拋物線的解析式.求出b,c的值.C點(diǎn)的坐標(biāo)已知,代入函數(shù)的解析式,就可以判斷是否在函數(shù)的圖象上.
(3)根據(jù)點(diǎn)P及點(diǎn)C的坐標(biāo)可得出直線PC的解析式,這樣可得出k的值,再由此直線與y=-
4
3
x2+bx+c
有且只有一個(gè)交點(diǎn),利用根的判別式可得出m的值.
(4)過點(diǎn)M作MF⊥x軸分別交CP、CB和x軸于E、N和F,過點(diǎn)P作PG⊥x軸交CB于G,根據(jù)S△CMP=s△CME+S△PME,四邊形MCAP的面積就可以表示成OF的函數(shù),利用函數(shù)的性質(zhì),就可以求出最值.
解答:解:(1)過點(diǎn)P作PG⊥x軸交CB于G.
tan∠CAO=
OC
OA
=
3
3
,
∴∠CAO=30°,
∴PCA=60°,
又∵∠ACB=30°,
∴∠PCB=30°,
在RT△PCM中,PG=
1
2
PC=
1
2
OC=
1
2
,GC=
3
2

∴點(diǎn)P的坐標(biāo)為(
3
2
,
3
2
).
綜上可得:∠PCB=30°,P點(diǎn)坐標(biāo)為(
3
2
,
3
2
).

(2)把P(
3
2
,
3
2
)
與A(
3
,0)
分別代入y=-
4
3
x2+bx+c
,
解得:b=
3
,c=1,
y=-
4
3
x2+
3
x+1


(3)由P(
3
2
,
3
2
)
,C(0,1)可得直線CP:y=
3
3
x+1
,
∵直線y=kx+m平行于CP,
k=
3
3
,
y=
3
3
x+m
y=-
4
3
x2+
3
x+1
只有一個(gè)交點(diǎn),
-
4
3
x2+
3
x+1=
3
3
x+m
有兩個(gè)相同的實(shí)數(shù)根(
2
3
3
)2-4×
4
3
×(m-1)=0
,
解得:m=
5
4
;…(3分)

(4)假設(shè)存在這樣的點(diǎn)M,使得四邊形MCAP的面積最大.
∵△ACP面積為定值,
∴要使四邊形MCAP的面積最大,只需使△PCM的面積最大.
過點(diǎn)M作MF⊥x軸分別交CP、CB和x軸于E、N和F,過點(diǎn)P作PG⊥x軸交CB于G.

S△CMP=s△CME+S△PME=
1
2
ME•CG=
3
4
ME
設(shè)M(x0,y0),
∵∠ECN=30°,CN=x0,
∴EN=
3
3
x0
∴ME=MF-EF=-
4
3
x02+
2
3
3
x0
∴S△CMP=-
3
3
x02+
1
2
x
∵a=-
3
3
<0,
∴S有最大值.
當(dāng)x0=
3
4
時(shí),S的最大值是
3
16
,
∵S△MCAP=S△CPM+S△ACP
∴四邊形MCAP的面積的最大值為
9
3
16

此時(shí)M點(diǎn)的坐標(biāo)為(
3
4
,
3
2

所以存在這樣的點(diǎn)M(
3
4
3
2
),使得四邊形MCAP的面積最大,其最大值為
9
3
16
點(diǎn)評:本題主要考查了待定系數(shù)法求函數(shù)的解析式、翻折變換及二次函數(shù)最值問題,是一道難度較大的綜合題,注意掌握最值問題基本的解決思路是轉(zhuǎn)化為函數(shù)問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形OABC的頂點(diǎn)0、B的坐標(biāo)分別是O(0,0)、B(8,4),頂點(diǎn)A在x軸上,頂點(diǎn)C在y軸上,把△OAB沿OB翻折,使點(diǎn)A落在點(diǎn)D的位置,BD與OA交于E.
①求證:OE=EB;
②求OE、DE的長度;
③求直線BD的解析.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形OABC的邊OA、OC在坐標(biāo)軸上,經(jīng)過點(diǎn)B的雙曲線的解析式為y=
k
x
(x
<0),M為OC上一點(diǎn),且CM=2OM,N為BC的中點(diǎn),BM與AN交于點(diǎn)E,若四邊形EMCN的面積為
13
4
,則k=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖,矩形OABC的長OA=
3
,寬OC=1,將△AOC沿AC翻折得△APC.
(1)求∠PCB的度數(shù);
(2)若P,A兩點(diǎn)在拋物線y=-
4
3
x2+bx+c上,求b,c的值,并說明點(diǎn)C在此拋物線上;
(3)(2)中的拋物線與矩形OABC邊CB相交于點(diǎn)D,與x軸相交于另外一點(diǎn)E,若點(diǎn)M是x軸上的點(diǎn),N是y軸上的點(diǎn),以點(diǎn)E、M、D、N為頂點(diǎn)的四邊形是平行四邊形,試求點(diǎn)M、N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•樊城區(qū)模擬)已知如圖,矩形OABC的長OA=2
3
,寬OC=2,將△AOC沿AC翻折得△AFC.
(1)求點(diǎn)F的坐標(biāo);
(2)求過A、F、C三點(diǎn)的拋物線解析式;
(3)在拋物線上是否存在一點(diǎn)P,使得△ACP為以A為直角頂點(diǎn)的直角三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形OABC的頂點(diǎn)坐標(biāo)分別是(0,0),(4,0),(4,1),(0,1),在矩形OABC的內(nèi)部任取一點(diǎn)(x,y),則x<y的概率是
 

查看答案和解析>>

同步練習(xí)冊答案