解:(1)證明:∵△ABC是⊙O的內(nèi)接正三角形,
∴∠BAC=60°,
∴∠CDE=60°,
∵點D是
的中點,
∴BD=CD,
∵BD=DE,
∴CD=DE,
∴△CDE是正三角形;
(2)如圖:當△CDE繞點C旋轉(zhuǎn)∠ACD的度數(shù)時與△ABC成位似圖形,
∵∠BDC=120°,BD=CD,
∴∠CBD=∠BCD=30°,
∵∠ACB=60°,
∴∠ACD=90°,
∴當△CDE繞點C旋轉(zhuǎn)90°時與△ABC成位似圖形,
作DF⊥BC于F點,
設(shè)DC=2x,
∵∠BCD=30°,
∴FC=
,
∴BC=2FC=2
x,
∴位似比=
=
=
=
,
∴位似比為
.
分析:(1)利用圓內(nèi)接四邊形的性質(zhì)可以求得∠BDC的度數(shù),然后利用有一個角是60°的等腰三角形是等邊三角形可以判定等邊三角形;
(2)當CD與CA重合時,兩三角形位似,所以當旋轉(zhuǎn)∠ACD的度數(shù)的時候,兩三角形位似,位似比等于CD與CA的比.∠B
點評:本題考查了位似變換、等邊三角形的判定及性質(zhì)、圓心角、弦、弧之間的關(guān)系,解題的關(guān)鍵是利用圓內(nèi)接四邊形的性質(zhì)得到∠BDC的度數(shù).