【題目】第二十四屆冬季奧林匹克運動會將于202224日至220日在北京舉行,北京將成為歷史上第一座既舉辦過夏奧會又舉辦過冬奧會的城市.某區(qū)舉辦了一次冬奧知識網(wǎng)上答題競賽,甲、乙兩校各有名學生參加活動,為了解這兩所學校的成績情況,進行了抽樣調(diào)查,過程如下,請補充完整.

[收集數(shù)據(jù)]

從甲、乙兩校各隨機抽取名學生,在這次競賽中他們的成績?nèi)缦?

甲:

乙:

[整理、描述數(shù)據(jù)]按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):

學校

人數(shù)

成績

(說明:優(yōu)秀成績?yōu)?/span>,良好成績?yōu)?/span>合格成績?yōu)?/span>.)

[分析數(shù)據(jù)]兩組樣本數(shù)據(jù)的平均分、中位數(shù)、眾數(shù)如下表所示:

學校

平均分

中位數(shù)

眾數(shù)

其中 .

[得出結論]

(1)小明同學說:“這次競賽我得了分,在我們學校排名屬中游略偏上!”由表中數(shù)據(jù)可知小明是 _校的學生;(填“甲”或“乙”)

(2)張老師從乙校隨機抽取--名學生的競賽成績,試估計這名學生的競賽成績?yōu)閮?yōu)秀的概率為_ ;

(3)根據(jù)以上數(shù)據(jù)推斷一所你認為競賽成績較好的學校,并說明理由:

(至少從兩個不同的角度說明推斷的合理性)

【答案】80;(1)甲;(2;(3)乙學校競賽成績較好,理由見解析

【解析】

首先根據(jù)乙校的成績結合眾數(shù)的定義即可得出a的值;

1)根據(jù)兩個學校成績的中位數(shù)進一步判斷即可;

2)根據(jù)概率的定義,結合乙校優(yōu)秀成績的概率進一步求解即可;

3)根據(jù)題意,從平均數(shù)以及中位數(shù)兩方面加以比較分析即可.

由乙校成績可知,其中80出現(xiàn)的次數(shù)最多,故80為該組數(shù)據(jù)的眾數(shù),∴a=80,

故答案為:80;

(1)由表格可知,甲校成績的中位數(shù)為60,乙校成績的中位數(shù)為75,

∵小明這次競賽得了分,在他們學校排名屬中游略偏上,

∴小明為甲校學生,

故答案為:甲;

(2)乙校隨便抽取一名學生的成績,該學生成績?yōu)閮?yōu)秀的概率為:,

故答案為:;

(3)乙校競賽成績較好,理由如下:

因為乙校的平均分高于甲校的平均分說明平均水平高,乙校的中位數(shù)75高于甲校的中位數(shù)65,說明乙校分數(shù)不低于70分的學生比甲校多,綜上所述,乙校競賽成績較好.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】青山區(qū)政府美化城市環(huán)境,計劃對面積為平方米的區(qū)域進行綠化,安排甲、乙兩個工程隊完成,已知乙隊每天能完成綠化的面積是甲隊每天能完成綠化面積的倍,并且在獨立完成面積為平方米區(qū)域的綠化時,甲隊比乙隊多用天.

求甲、乙兩工程隊每天能完成綠化的面積分別是多少平方米?

若區(qū)政府每天需付給甲隊的綠化費用為萬元,乙隊為萬元,要使這次的綠化總費用不超過萬元,至少應安排甲隊工作多少天?

為合理利用綠化用地,這是需要用長為米的植物隔離帶靠著墻(墻的最大可用長度為米,植物隔離帶的自身寬度不計),如圖所示,圍成中間隔有植物隔離帶的長方形中央綠地,設綠地的寬米,面積為.試問中央綠地的面積能達到嗎?如果能,請求出此時的長;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水產(chǎn)品養(yǎng)殖企業(yè)為指導該企業(yè)某種產(chǎn)品的養(yǎng)殖和銷售,對歷年市場行情和水產(chǎn)品的養(yǎng)殖情況進行了調(diào)查.調(diào)查發(fā)現(xiàn)這種水產(chǎn)品的每千克售價(元)與銷售月份(月)滿足關系式+36,而其每千克成本(元)與銷售月份(月)滿足的函數(shù)關系如圖所示:

1)試確定的值;

2)求出這種水產(chǎn)品每千克的利潤(元)與銷售月份(月)之間的函數(shù)關系式;

3)幾月份出售這種水產(chǎn)品每千克利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,AE平分∠BAD交邊BC于E,DF平分∠ADC交邊BC于F,若AD=11,EF=5,則AB=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平面直角坐標系中,拋物線yax22ax+4a0)交x軸于點A、B,與y軸交于點C,AB6

1)如圖1,求拋物線的解析式;

2)如圖2,點R為第一象限的拋物線上一點,分別連接RB、RC,設△RBC的面積為s,點R的橫坐標為t,求st的函數(shù)關系式;

3)在(2)的條件下,如圖3,點Dx軸的負半軸上,點Fy軸的正半軸上,點EOB上一點,點P為第一象限內(nèi)一點,連接PDEF,PDOC于點G,DGEF,PD⊥EF,連接PE,∠PEF2∠PDE,連接PB、PC,過點RRT⊥OB于點T,交PC于點S,若點PBT的垂直平分線上,OBTS,求點R的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司共有三個部門,根據(jù)每個部門的員工人數(shù)和相應每人所創(chuàng)的年利潤繪制成如下的統(tǒng)計表和扇形圖.

各部門人數(shù)及每人所創(chuàng)年利潤統(tǒng)計表

部門

員工人數(shù)

每人所創(chuàng)的年利潤/萬元

A

5

10

B

8

C

5

(1)在扇形圖中,C部門所對應的圓心角的度數(shù)為___________;

在統(tǒng)計表中,___________,___________;

(2)求這個公司平均每人所創(chuàng)年利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張老師在講解復習《圓》的內(nèi)容時,用投影儀屏幕展示出如下內(nèi)容:

如圖,內(nèi)接于,直徑的長為2,過點的切線交的延長線于點

張老師讓同學們添加條件后,編制一道題目,并按要求完成下列填空.

1)在屏幕內(nèi)容中添加條件,則的長為______

2)以下是小明、小聰?shù)膶υ挘?/span>

小明:我加的條件是,就可以求出的長

小聰:你這樣太簡單了,我加的是,連結,就可以證明全等.

參考上面對話,在屏幕內(nèi)容中添加條件,編制一道題目(此題目不解答,可以添線、添字母).______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛汽車準備從甲地開往乙地.若平均速度為80km/h,則需要5h到達.

1)寫出汽車從甲地到乙地所用時間與平均速度之間的關系式;

2)如果準備用8h到達,那么平均速度是多少?

3)已知汽車的最大平均速度是100km/h,那么汽車最少用多長時間可以到達?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BC6,點EBC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)的點F處,連接CF,則CF的長為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案