函數(shù)y=x2-2x-2的圖象如上圖所示,根據(jù)其中提供的信息,可求得使y≥1成立的x的取值范圍是             .

試題分析:根據(jù)圖形分析可知,當(dāng)y=1時,滿足

所以滿足即可
點評:此題將用待定系數(shù)法求二次函數(shù)解析式、動點問題和最小值問題相結(jié)合,有較大的思維跳躍,考查了同學(xué)們的應(yīng)變能力和綜合思維能力,是一道好題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線經(jīng)過點A(3,0),B(﹣1,0).
(1)求拋物線的解析式;
(2)求拋物線的頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+2交x軸于A(﹣1,0),B(4,0)兩點,交y軸于點C,與過點C且平行于x軸的直線交于另一點D,點P是拋物線上一動點.

(1)求拋物線解析式及點D坐標(biāo);
(2)點E在x軸上,若以A,E,D,P為頂點的四邊形是平行四邊形,求此時點P的坐標(biāo);
(3)過點P作直線CD的垂線,垂足為Q,若將△CPQ沿CP翻折,點Q的對應(yīng)點為Q′.是否存在點P,使Q′恰好落在x軸上?若存在,求出此時點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知關(guān)于的一元二次函數(shù))的圖象與軸相交于、兩點(點在點的左側(cè)),與軸交于點,且,頂點為

(1)求出一元二次函數(shù)的關(guān)系式;
(2)點為線段上的一個動點,過點軸的垂線,垂足為.若,的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫出的取值范圍;
(3)在(2)的條件下,當(dāng)點坐標(biāo)是           時,為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線過點
(1)求拋物線的解析式;
(2)將拋物線在直線下方的部分沿直線翻折,圖象其余的部分保持不變,得到的新函數(shù)圖象記為.點在圖象上,且
①求的取值范圍;
②若點也在圖象上,且滿足恒成立,則的取值范圍為      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),在平面直角坐標(biāo)系中,矩形ABCO,B點坐標(biāo)為(4,3),拋物線yx2bxc經(jīng)過矩形ABCO的頂點BC,DBC的中點,直線ADy軸交于E點,與拋物線yx2bxc交于第四象限的F點.

(1)求該拋物線解析式與F點坐標(biāo);
(2)如圖,動點P從點C出發(fā),沿線段CB以每秒1個單位長度的速度向終點B運動;
同時,動點M從點A出發(fā),沿線段AE以每秒個單位長度的速度向終點E運動.過
PPHOA,垂足為H,連接MP,MH.設(shè)點P的運動時間為t秒.
①問EPPHHF是否有最小值,如果有,求出t的值;如果沒有,請說明理由.
②若△PMH是等腰三角形,求出此時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

先閱讀理解下面的例題,再按要求解答后面的問題
例題:解一元二次不等式>0.解:令y=,畫出y=如圖所示,

由圖像可知:當(dāng)x<1或x>2時,y>0.所以一元二次不等式>0的解集為x<1或x>2.
填空:(1)<0的解集為                              
(2)>0的解集為                              ;
用類似的方法解一元二次不等式>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某種商品的進(jìn)價為每件50元,售價為每件60元.為了促銷,決定凡是購買10件以上的,每多買一件,售價就降低0.10元(例如,某人買20件,于是每件降價0.10×(20-10)=1元,就可以按59元/件的價格購買),但是最低價為55元/件.同時,商店在出售中,還需支出稅收等其他雜費1.6元/件.
(1)求顧客一次至少買多少件,才能以最低價購買?
(2)寫出當(dāng)出售x件時(x>10),利潤y(元)與出售量x(件)之間的函數(shù)關(guān)系式;
(3)有一天,一位顧客買了47件,另一位顧客買了60件,結(jié)果發(fā)現(xiàn)賣了60件反而比賣了47件賺的錢少.為了使每次賣的越多賺的錢也越多,在其他促銷條件不變的情況下,最低價55元/件至少要提高到多少?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某市場銷售一批名牌襯衫,平均每天可銷售20件,每件盈利40元。為了擴(kuò)大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)降價措施。經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出2件。求:
(1)若商場平均每天要盈利1200元,且讓顧客感到實惠,每件襯衫應(yīng)降價多少元?
(2)要使商場平均每天盈利最多,請你幫助設(shè)計降價方案。

查看答案和解析>>

同步練習(xí)冊答案