【題目】數(shù)學(xué)活動(dòng) 實(shí)驗(yàn)、猜想與證明
問(wèn)題情境
(1)數(shù)學(xué)活動(dòng)課上,小穎向同學(xué)們提出了這樣一個(gè)問(wèn)題:如圖(1),在矩形ABCD中,AB=2BC,M、N分別是AB,CD的中點(diǎn),作射線MN,連接MD,MC,請(qǐng)直接寫(xiě)出線段MD與MC之間的數(shù)量關(guān)系.
解決問(wèn)題
(2)小彬受此問(wèn)題啟發(fā),將矩形ABCD變?yōu)槠叫兴倪呅,其中?/span>A為銳角,如圖(2),AB=2BC,M,N分別是AB,CD的中點(diǎn),過(guò)點(diǎn)C作CE⊥AD交射線AD于點(diǎn)E,交射線MN于點(diǎn)F,連接ME,MC,則ME=MC,請(qǐng)你證明小彬的結(jié)論;
(3)小麗在小彬結(jié)論的基礎(chǔ)上提出了一個(gè)新問(wèn)題:∠BME與∠AEM有怎樣的數(shù)量關(guān)系?請(qǐng)你回答小麗提出的這個(gè)問(wèn)題,并證明你的結(jié)論.
【答案】(1)MD=MC;(2)證明見(jiàn)解析;(3)∠BME=3∠AEM,證明見(jiàn)解析
【解析】
(1)根據(jù)矩形的性質(zhì)可得AD=BC,∠A=∠B=90°,然后利用SAS證出△AMD≌△BMC,即可得出結(jié)論;
(2)根據(jù)平行四邊形的判定證出四邊形AMND和四邊形MBCN為平行四邊形,利用平行線分線段成比例定理證出CF=EF,從而得出MN垂直平分CE,根據(jù)垂直平分線的性質(zhì)即可證出結(jié)論;
(3)根據(jù)平行四邊形的性質(zhì)可得AD∥MN∥BC,CF∥BM,MN=BC,然后根據(jù)平行線的性質(zhì)、三線合一和等邊對(duì)等角證出∠AEM=∠EMF、∠BMC=∠NMC、∠EMF=∠NMC,從而證出結(jié)論.
解:(1)MD=MC
∵四邊形ABCD為矩形
∴AD=BC,∠A=∠B=90°
∵點(diǎn)M為AB的中點(diǎn)
∴AM=BM
在△AMD和△BMC中
∴△AMD≌△BMC
∴MD=MC
(2)∵M,N分別是AB,CD的中點(diǎn),
∴AM=BM,CN=DN
∵四邊形ABCD為平行四邊形
∴AB∥CD,AB=CD
∴AM=BM= CN=DN
∴四邊形AMND和四邊形MBCN為平行四邊形
∴AD∥MN
∴
∴CF=EF
∵CE⊥AD
∴CE⊥MN
∴MN垂直平分CE
∴ME = MC
(3)∠BME=3∠AEM,證明如下:
∵四邊形AMND和四邊形MBCN為平行四邊形
∴AD∥MN∥BC,CF∥BM,MN=BC
∴∠AEM=∠EMF,∠NCM=∠BMC
∵AB=2BC,AB=CD=2CF
∴CF=MN
∴∠NCM=∠NMC
∴∠BMC=∠NMC
∵ME = MC,MF⊥CE
∴∠EMF=∠NMC
∴∠BME=∠EMF+∠NMC+∠BMC=3∠EMF=3∠AEM
即∠BME=3∠AEM
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】紅紅有兩把不同的鎖和四把不同的鑰匙,其中只有兩把鑰匙能打開(kāi)對(duì)應(yīng)的兩把鎖,用列表法或樹(shù)狀圖求概率.
(1)若取一把鑰匙,求紅紅一次打開(kāi)鎖的概率;
(2)若取兩把鑰匙,求紅紅恰好打開(kāi)兩把鎖的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點(diǎn)F,則∠CBF為( 。
A.75°B.60°C.55°D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】依據(jù)國(guó)家實(shí)行的《國(guó)家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》,對(duì)懷柔區(qū)初一學(xué)生身高進(jìn)行抽樣調(diào)查,以便總結(jié)懷柔區(qū)初一學(xué)生現(xiàn)存的身高問(wèn)題,分析其影響因素,為學(xué)生的健康發(fā)展及學(xué)校體育教育改革提出合理項(xiàng)建議.已知懷柔區(qū)初一學(xué)生有男生840人,女生800人,他們的身高在150≤x<175范圍內(nèi),隨機(jī)抽取初一學(xué)生進(jìn)行抽樣調(diào)查.抽取的樣本中,男生比女生多2人,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:
身高情況分組表
組別 | 身高(cm) |
A | 150≤x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | 170≤x<175 |
根據(jù)統(tǒng)計(jì)圖表提供的信息,下列說(shuō)法中
①抽取男生的樣本中,身高在155≤x<165之間的學(xué)生有18人;
②初一學(xué)生中女生的身高的中位數(shù)在B組;
③抽取的樣本中,抽取女生的樣本容量是38;
④初一學(xué)生身高在160≤x<170之間的學(xué)生約有800人.
其中合理的是( 。
A.①②B.①④C.②④D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將矩形ABCD折疊使A,C重合,折痕交BC于E,交AD于F,
(1)求證:四邊形AECF為菱形;
(2)若AB=4,BC=8,求菱形的邊長(zhǎng);
(3)在(2)的條件下折痕EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于、兩點(diǎn),其中點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.
(1)根據(jù)圖象,直接寫(xiě)出滿(mǎn)足的的取值范圍;
(2)求這兩個(gè)函數(shù)的表達(dá)式;
(3)點(diǎn)在線段上,且,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)和反比例函數(shù).
如圖1,若,且函數(shù)、的圖象都經(jīng)過(guò)點(diǎn).求m,k的值;
如圖2,過(guò)點(diǎn)作y軸的平行線l與函數(shù)的圖象相交于點(diǎn)B,與反比例函數(shù)的圖象相交于點(diǎn)C.
若,直線l與函數(shù)的圖象相交點(diǎn)當(dāng)點(diǎn)B、C、D中的一點(diǎn)到另外兩點(diǎn)的距離相等時(shí),求的值;
過(guò)點(diǎn)B作x軸的平行線與函數(shù)的圖象相交與點(diǎn)當(dāng)的值取不大于1的任意實(shí)數(shù)時(shí),點(diǎn)B、C間的距離與點(diǎn)B、E間的距離之和d始終是一個(gè)定值.求此時(shí)k的值及定值d.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是將拋物線y=-x2 平移后得到的拋物線,其對(duì)稱(chēng)軸為x=1,與x軸的一個(gè)交點(diǎn)為A(-1,0) ,另一交點(diǎn)為B,與y軸交點(diǎn)為C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)N 為拋物線上一點(diǎn),且BC⊥NC,求點(diǎn)N的坐標(biāo);
(3)點(diǎn)P是拋物線上一點(diǎn),點(diǎn)Q是一次函數(shù)y=x+的圖象上一點(diǎn),若四邊形OAPQ為平行四邊形,這樣的點(diǎn)P、Q是否存在?若存在,分別求出點(diǎn)P、Q的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,OC平分∠AOB,點(diǎn)P是射線OC上的一點(diǎn).
(1)如圖一,過(guò)點(diǎn)P作PD⊥OA,PE⊥OB,說(shuō)明PD與PE相等的理由.
(2)如圖二,如果點(diǎn)F、G分別在射線OA、OB上,且∠FPG=60°,那么線段PF與PG相等嗎?請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,聯(lián)合FG,是什么形狀的三角形,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com