【題目】數(shù)學(xué)活動(dòng) 實(shí)驗(yàn)、猜想與證明

問(wèn)題情境

1)數(shù)學(xué)活動(dòng)課上,小穎向同學(xué)們提出了這樣一個(gè)問(wèn)題:如圖(1),在矩形ABCD中,AB=2BC,M、N分別是AB,CD的中點(diǎn),作射線MN,連接MDMC,請(qǐng)直接寫(xiě)出線段MDMC之間的數(shù)量關(guān)系.

解決問(wèn)題

2)小彬受此問(wèn)題啟發(fā),將矩形ABCD變?yōu)槠叫兴倪呅,其中?/span>A為銳角,如圖(2),AB=2BC,MN分別是AB,CD的中點(diǎn),過(guò)點(diǎn)CCEAD交射線AD于點(diǎn)E,交射線MN于點(diǎn)F,連接ME,MC,則ME=MC,請(qǐng)你證明小彬的結(jié)論;

3)小麗在小彬結(jié)論的基礎(chǔ)上提出了一個(gè)新問(wèn)題:∠BME與∠AEM有怎樣的數(shù)量關(guān)系?請(qǐng)你回答小麗提出的這個(gè)問(wèn)題,并證明你的結(jié)論.

【答案】1MD=MC;(2)證明見(jiàn)解析;(3)∠BME=3AEM,證明見(jiàn)解析

【解析】

1)根據(jù)矩形的性質(zhì)可得AD=BC,∠A=B=90°,然后利用SAS證出△AMD≌△BMC,即可得出結(jié)論;

2)根據(jù)平行四邊形的判定證出四邊形AMND和四邊形MBCN為平行四邊形,利用平行線分線段成比例定理證出CF=EF,從而得出MN垂直平分CE,根據(jù)垂直平分線的性質(zhì)即可證出結(jié)論;

3)根據(jù)平行四邊形的性質(zhì)可得ADMNBC,CFBM,MN=BC,然后根據(jù)平行線的性質(zhì)、三線合一和等邊對(duì)等角證出∠AEM=EMF、∠BMC=NMC、∠EMF=NMC,從而證出結(jié)論.

解:(1MD=MC

∵四邊形ABCD為矩形

AD=BC,∠A=B=90°

∵點(diǎn)MAB的中點(diǎn)

AM=BM

在△AMD和△BMC

∴△AMD≌△BMC

MD=MC

2)∵M,N分別是AB,CD的中點(diǎn),

AM=BM,CN=DN

∵四邊形ABCD為平行四邊形

ABCD,AB=CD

AM=BM= CN=DN

∴四邊形AMND和四邊形MBCN為平行四邊形

ADMN

CF=EF

CEAD

CEMN

MN垂直平分CE

ME = MC

3)∠BME=3AEM,證明如下:

∵四邊形AMND和四邊形MBCN為平行四邊形

ADMNBC,CFBM,MN=BC

∴∠AEM=EMF,∠NCM=BMC

AB=2BC,AB=CD=2CF

CF=MN

∴∠NCM=NMC

∴∠BMC=NMC

ME = MCMFCE

∴∠EMF=NMC

∴∠BME=EMF+∠NMC+∠BMC=3EMF=3AEM

即∠BME=3AEM

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】紅紅有兩把不同的鎖和四把不同的鑰匙其中只有兩把鑰匙能打開(kāi)對(duì)應(yīng)的兩把鎖,用列表法或樹(shù)狀圖求概率

1若取一把鑰匙求紅紅一次打開(kāi)鎖的概率;

2若取兩把鑰匙求紅紅恰好打開(kāi)兩把鎖的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點(diǎn)F,則∠CBF為( 。

A.75°B.60°C.55°D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】依據(jù)國(guó)家實(shí)行的《國(guó)家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》,對(duì)懷柔區(qū)初一學(xué)生身高進(jìn)行抽樣調(diào)查,以便總結(jié)懷柔區(qū)初一學(xué)生現(xiàn)存的身高問(wèn)題,分析其影響因素,為學(xué)生的健康發(fā)展及學(xué)校體育教育改革提出合理項(xiàng)建議.已知懷柔區(qū)初一學(xué)生有男生840人,女生800人,他們的身高在150≤x<175范圍內(nèi),隨機(jī)抽取初一學(xué)生進(jìn)行抽樣調(diào)查.抽取的樣本中,男生比女生多2人,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:

身高情況分組表

組別

身高(cm)

A

150≤x<155

B

155≤x<160

C

160≤x<165

D

165≤x<170

E

170≤x<175

根據(jù)統(tǒng)計(jì)圖表提供的信息,下列說(shuō)法中

①抽取男生的樣本中,身高在155≤x<165之間的學(xué)生有18人;

②初一學(xué)生中女生的身高的中位數(shù)在B組;

③抽取的樣本中,抽取女生的樣本容量是38;

④初一學(xué)生身高在160≤x<170之間的學(xué)生約有800人.

其中合理的是( 。

A.①②B.①④C.②④D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將矩形ABCD折疊使A,C重合,折痕交BCE,交ADF,

1)求證:四邊形AECF為菱形;

2)若AB=4,BC=8,求菱形的邊長(zhǎng);

3)在(2)的條件下折痕EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于兩點(diǎn),其中點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.

1)根據(jù)圖象,直接寫(xiě)出滿(mǎn)足的取值范圍;

2)求這兩個(gè)函數(shù)的表達(dá)式;

3)點(diǎn)在線段上,且,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)和反比例函數(shù)

如圖1,若,且函數(shù)、的圖象都經(jīng)過(guò)點(diǎn).求m,k的值;

如圖2,過(guò)點(diǎn)y軸的平行線l與函數(shù)的圖象相交于點(diǎn)B,與反比例函數(shù)的圖象相交于點(diǎn)C

,直線l與函數(shù)的圖象相交點(diǎn)當(dāng)點(diǎn)BC、D中的一點(diǎn)到另外兩點(diǎn)的距離相等時(shí),求的值;

過(guò)點(diǎn)Bx軸的平行線與函數(shù)的圖象相交與點(diǎn)當(dāng)的值取不大于1的任意實(shí)數(shù)時(shí),點(diǎn)B、C間的距離與點(diǎn)B、E間的距離之和d始終是一個(gè)定值.求此時(shí)k的值及定值d

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是將拋物線y=-x2 平移后得到的拋物線,其對(duì)稱(chēng)軸為x=1,與x軸的一個(gè)交點(diǎn)為A(-1,0) ,另一交點(diǎn)為B,與y軸交點(diǎn)為C.

(1)求拋物線的函數(shù)表達(dá)式;

(2)若點(diǎn)N 為拋物線上一點(diǎn),且BCNC,求點(diǎn)N的坐標(biāo);

3)點(diǎn)P是拋物線上一點(diǎn),點(diǎn)Q是一次函數(shù)y=x+的圖象上一點(diǎn),若四邊形OAPQ為平行四邊形,這樣的點(diǎn)P、Q是否存在?若存在,分別求出點(diǎn)P、Q的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,OC平分∠AOB,點(diǎn)P是射線OC上的一點(diǎn).

1)如圖一,過(guò)點(diǎn)PPDOA,PEOB,說(shuō)明PDPE相等的理由.

2)如圖二,如果點(diǎn)F、G分別在射線OA、OB上,且∠FPG=60°,那么線段PFPG相等嗎?請(qǐng)說(shuō)明理由;

3)在(2)的條件下,聯(lián)合FG,是什么形狀的三角形,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案