【題目】已知在矩形ABCD中,AB=2,AD=4.P是對(duì)角線BD上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、D重合),過點(diǎn)P作PF⊥BD,交射線BC于點(diǎn)F.聯(lián)結(jié)AP,畫∠FPE=∠BAP,PE交BF于點(diǎn)E.設(shè)PD=x,EF=y.

(1)當(dāng)點(diǎn)A、P、F在一條直線上時(shí),求△ABF的面積;

(2)如圖1,當(dāng)點(diǎn)F在邊BC上時(shí),求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)定義域;

(3)聯(lián)結(jié)PC,若∠FPC=∠BPE,請(qǐng)直接寫出PD的長(zhǎng).

【答案】(1)1;(2)y=;(3)PD的長(zhǎng)為±1

【解析】試題分析:(1)根據(jù)矩形ABCD A、P、F在一條直線上,且PFBD,可得, ,得一,從而可得 ;

(2)先證明從而得到 ,AD//BC ,可得從而根據(jù)三角函數(shù)可得 , ,代入,即可得;

(3)分∠CPF的∠FPE的內(nèi)部與外部?jī)煞N情況進(jìn)行討論即可得.

試題解析:(1)∵矩形ABCD,

, A、P、F在一條直線上,且PFBD,

,

,,

, ,

;

(2)PFBP ,,

,

, 又∵BAP =FPE,

, ,

AD//BC ,

, 即

, ,

,

;

(3)∠CPF=∠BPE,

如圖所示,當(dāng)點(diǎn)FCE上時(shí),

∵∠BPF=∠FPD=90°,∴∠DPC=∠FPE,

∵∠FPE=∠BAP,∴∠DPC=∠BAP,

∵AB//CD,∴∠ABD=∠CDB,

∴△PAB△CPD,

∴PB:CD=AB:PD,

∴PB·PD=CD·AB,

x()=2×2,

x=;

如圖所示,當(dāng)點(diǎn)FEC延長(zhǎng)線上時(shí),

過點(diǎn)PPNCD于點(diǎn)N,在CD上取一點(diǎn)M,連接PM,使∠MPF=∠CPF,

則有PC:PM=CH:MH,

∵∠BPF=∠DPF=90°,∴∠BPC=∠DPM,

∵∠BPE=∠CPF,∴∠BPE=∠EPF,

∵∠BAP=∠FPE,∴∠BAP=∠DPM,

∵∠ABD=∠BDC,

∴△PAB△MPD,

∴PB:MD=AB:PD,

PD=x,tan∠PDM=tan∠PFC=2,

易得:DN= ,PN= ,CN=2-

PH=2x,F(xiàn)H= ,CH=2-x,

PB:MD=AB:PD可得MD= ,從而可得MN,

Rt△PCN中利用勾股定理可得PC,

PC:PM=CH:MH可得PM,

在在Rt△PMN中利用勾股定理可得關(guān)于x 的方程,

解得x=

綜上:PD的長(zhǎng)為: .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)圖象與軸交于A(-3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.

1)求這個(gè)二次函數(shù)的解析式;

2)點(diǎn)P是直線AC上方的拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)P,使ACP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由;

3)點(diǎn)Q是直線AC上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)QQE垂直于軸,垂足為E.是否存在點(diǎn)Q,使以點(diǎn)B、QE為頂點(diǎn)的三角形與AOC相似?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+ca≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A1,3),與x軸的一個(gè)交點(diǎn)B4,0),直線y2=mx+nm≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:

①2a+b=0;②abc0方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;拋物線與x軸的另一個(gè)交點(diǎn)是(-1,0);當(dāng)1x4時(shí),有y2y1

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形的邊長(zhǎng)為是邊的中點(diǎn),是邊上的一個(gè)動(dòng)點(diǎn),將線段繞著逆時(shí)針旋轉(zhuǎn),得到,連接,則的最小值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD在平面直角坐標(biāo)系中的位置如圖所示,對(duì)角線AC與BD的交點(diǎn)E恰好在y軸上,過點(diǎn)D和BC的中點(diǎn)H的直線交AC于點(diǎn)F,線段DE,CD的長(zhǎng)是方程x2﹣9x+18=0的兩根,請(qǐng)解答下列問題:

(1)求點(diǎn)D的坐標(biāo);

(2)若反比例函數(shù)y=(k≠0)的圖象經(jīng)過點(diǎn)H,則k=   ;

(3)點(diǎn)Q在直線BD上,在直線DH上是否存在點(diǎn)P,使以點(diǎn)F,C,P,Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)在一次九年級(jí)數(shù)學(xué)做了檢測(cè)中,有一道滿分8分的解答題,按評(píng)分標(biāo)準(zhǔn),所有考生的得分只有四種:0分,3分,5分,8分.老師為了了解學(xué)生的得分情況與題目的難易情況,從全區(qū)4500名考生的試卷中隨機(jī)抽取一部分,通過分析與整理,繪制了如下兩幅圖不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上信息解答下列問題:

1)填空:a=  ,b=  ,并把條形統(tǒng)計(jì)圖補(bǔ)全;

2)請(qǐng)估計(jì)該地區(qū)此題得滿分(即8分)的學(xué)生人數(shù);

3)已知難度系數(shù)的計(jì)算公式為L=,其中L為難度系數(shù),X為樣本平均得分,W為試題滿分值.一般來說,根據(jù)試題的難度系數(shù)可將試題分為以下三類:當(dāng)0L≤0.4時(shí),此題為難題;當(dāng)0.4L≤0.7時(shí),此題為中等難度試題;當(dāng)0.7L1時(shí),此題為容易題.試問此題對(duì)于該地區(qū)的九年級(jí)學(xué)生來說屬于哪一類?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用同樣規(guī)格的黑白兩色正方形瓷磚鋪設(shè)長(zhǎng)方形地面,觀察下列圖形,探究并解答問題:

(1)在第4個(gè)圖中,共有白色瓷磚______塊;在第個(gè)圖中,共有白色瓷磚_____塊;

(2)試用含的代數(shù)式表示在第個(gè)圖中共有瓷磚的塊數(shù);

(3)如果每塊黑瓷磚35元,每塊白瓷磚50元,當(dāng)時(shí),求鋪設(shè)長(zhǎng)方形地面共需花多少錢購(gòu)買瓷磚?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于任意四個(gè)有理數(shù)a,b,c,d,可以組成兩個(gè)有理數(shù)對(duì)a,bcd).我們規(guī)定

abc,d=bcad

例如:(1,23,4=2×31×4=2

根據(jù)上述規(guī)定解決下列問題

1有理數(shù)對(duì)2,-33,-2=_______;

2若有理數(shù)對(duì)(-3,2x11,x+1=7x=_______;

3當(dāng)滿足等式(-3,2x1k,xk=52kx是整數(shù)時(shí),求整數(shù)k的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】”(jiong)是近時(shí)期網(wǎng)絡(luò)流行語(yǔ),像一個(gè)人臉郁悶的神情.如圖所示,一張邊長(zhǎng)為20的正方形的紙片,剪去兩個(gè)一樣的小直角三角形和一個(gè)長(zhǎng)方形得到一個(gè)字圖案(陰影部分).設(shè)剪去的小長(zhǎng)方形長(zhǎng)和寬分別為x、y,剪去的兩個(gè)小直角三角形的兩直角邊長(zhǎng)也分別為x、y.

(1)用含有x、y的代數(shù)式表示右圖中的面積;

(2)當(dāng)時(shí),求此時(shí)的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案