【題目】已知正方形OABC在平面直角坐標(biāo)系中,點A,C分別在x軸,y軸的正半軸上,等腰直角三角形OEF的直角頂點O在原點,E,F分別在OA,OC上,且OA=4,OE=2.將△OEF繞點O逆時針旋轉(zhuǎn),得△OE1F1,點E,F旋轉(zhuǎn)后的對應(yīng)點為E1,F1.
(Ⅰ)①如圖①,求E1F1的長;②如圖②,連接CF1,AE1,求證△OAE1≌△OCF1;
(Ⅱ)將△OEF繞點O逆時針旋轉(zhuǎn)一周,當(dāng)OE1∥CF1時,求點E1的坐標(biāo)(直接寫出結(jié)果即可).
【答案】(Ⅰ)①2;②證明見解析;(Ⅱ)(1,)或(1,﹣).
【解析】
(Ⅰ)①由等腰直角三角形的性質(zhì)和勾股定理求出EF,再由旋轉(zhuǎn)的性質(zhì)即可得出答案;②根據(jù)旋轉(zhuǎn)的性質(zhì)找到相等的線段,根據(jù)SAS定理證明;
(Ⅱ)由于△OEF是等腰Rt△,若OE∥CF,那么CF必與OF垂直;在旋轉(zhuǎn)過程中,E、F的軌跡是以O為圓心,OE(或OF)長為半徑的圓,若CF⊥OF,那么CF必為⊙O的切線,且切點為F;可過C作⊙O的切線,那么這兩個切點都符合F點的要求,因此對應(yīng)的E點也有兩個;在Rt△OFC中,OF=2,OC=OA=4,可證得∠FCO=30°,即∠EOC=30°,已知了OE的長,通過解直角三角形,得到E點的坐標(biāo),由此得解.
(Ⅰ)①解:∵等腰直角三角形OEF的直角頂點O在原點,OE=2,
∴∠EOF=90°,OF=OE=2,
∴EF===2,
∵將△OEF繞點O逆時針旋轉(zhuǎn),得△OE1F1,
∴E1F1=EF=2;
②證明:∵四邊形OABC為正方形,
∴OC=OA.
∵將△OEF繞點O逆時針旋轉(zhuǎn),得△OE1F1,
∴∠AOE1=∠COF1,
∵△OEF是等腰直角三角形,
∴△OE1F1是等腰直角三角形,
∴OE1=OF1.
在△OAE1和△OCF1中,
∴△OAE1≌△OCF1(SAS);
(Ⅱ)解:∵OE⊥OF,
∴過點F與OE平行的直線有且只有一條,并與OF垂直,
當(dāng)三角板OEF繞O點逆時針旋轉(zhuǎn)一周時,
則點F在以O為圓心,以OF為半徑的圓上.
∴過點F與OF垂直的直線必是圓O的切線,
又點C是圓O外一點,過點C與圓O相切的直線有且只有2條,不妨設(shè)為CF1和CF2,
此時,E點分別在E1點和E2點,滿足CF1∥OE1,CF2∥OE2.
當(dāng)切點F1在第二象限時,點E1在第一象限.
在直角三角形CF1O中,OC=4,OF1=2,
cos∠COF1===,
∴∠COF1=60°,
∴∠AOE1=60°.
∴點E1的橫坐標(biāo)=2cos60°=1,
點E1的縱坐標(biāo)=2sin60°=,
∴點E1的坐標(biāo)為(1,);
當(dāng)切點F2在第一象限時,點E2在第四象限.
同理可求:點E2的坐標(biāo)為(1,﹣).
綜上所述,當(dāng)OE1∥CF1時,點E1的坐標(biāo)為(1,)或(1,﹣).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BCD=90°,且BC=DC,直線PQ經(jīng)過點D.設(shè)∠PDC=α(45°<α<135°),BA⊥PQ于點A,將射線CA繞點C按逆時針方向旋轉(zhuǎn)90°,與直線PQ交于點E.
(1)當(dāng)α=125°時,∠ABC= °;
(2)求證:AC=CE;
(3)若△ABC的外心在其內(nèi)部,直接寫出α的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點O逆時針旋轉(zhuǎn)45°后得到正方形OA1B1C1,依此方式,繞點O連續(xù)旋轉(zhuǎn)2018次得到正方形OA2018B2018C2018,如果點A的坐標(biāo)為(1,0),那么點B2018的坐標(biāo)為( 。
A. (1,1) B. (0,) C. () D. (﹣1,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對垃圾進(jìn)行分類投放,能提高垃圾處理和再利用的效率,減少污染,保護(hù)環(huán)境.為了檢查垃圾分類的落實情況,某居委會成立了甲、乙兩個檢查組,采取隨機抽查的方式分別對轄區(qū)內(nèi)的A,B,C,D四個小區(qū)進(jìn)行檢查,并且每個小區(qū)不重復(fù)檢查.
(1)甲組抽到A小區(qū)的概率是多少;
(2)請用列表或畫樹狀圖的方法求甲組抽到A小區(qū),同時乙組抽到C小區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,AC為直徑,MA,MB分別切⊙O于點A,B,過點B作BD⊥AC于點E,交⊙O于點D,若BD=MA,則∠AMB的大小為_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以正六邊形ABCDEF的中心O為原點建立平面直角坐標(biāo)系,過點A作AP1⊥OB于點P1,再過P1作P1P2⊥OC于點P2,再過P2作P2P3⊥OD于點P3,依次進(jìn)行……若正六邊形的邊長為1,則點P2019的橫坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣1,0)和B(3,0)兩點,與y軸交于點C,點D是該拋物線的頂點,分別連接AC、CD、AD.
(1)求拋物線的函數(shù)表達(dá)式以及頂點D的坐標(biāo);
(2)在拋物線上取一點P(不與點C重合),并分別連接PA、PD,當(dāng)△PAD的面積與△ACD的面積相等時,求點P的坐標(biāo);
(3)將(1)中所求得的拋物線沿A、D所在的直線平移,平移后點A的對應(yīng)點為A′,點C的對應(yīng)點為C′,點D的對應(yīng)點為D′,當(dāng)四邊形AA′C′C是菱形時,求此時平移后的拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE、CD 相交于點 A,連接 BC,DE,下列條件中不能判斷△ABC∽ADE 的是( )
A. ∠B=∠D B. ∠C=∠E C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2﹣2mx+m2﹣1與y軸交于點C.
(1)試用含m的代數(shù)式表示拋物線的頂點坐標(biāo);
(2)將拋物線y=x2﹣2mx+m2﹣1沿直線y=﹣1翻折,得到的新拋物線與y軸交于點D.若m>0,CD=8,求m的值;
(3)已知A(2k,0),B(0,k),在(2)的條件下,當(dāng)線段AB與拋物線y=x2﹣2mx+m2﹣1只有一個公共點時,直接寫出k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com