【題目】回顧】

如圖1,ABC中,B=30°,AB=3BC=4,則ABC的面積等于

【探究】

2是同學們熟悉的一副三角尺,一個含有30°的角,較短的直角邊長為a;另一個含有45°的角,直角邊長為b,小明用兩副這樣的三角尺拼成一個平行四邊形ABCD(如圖3),用了兩種不同的方法計算它的面積,從而推出sin75°=,小麗用兩副這樣的三角尺拼成了一個矩形EFGH(如圖4),也推出sin75°=,請你寫出小明或小麗推出sin75°=的具體說理過程.

【應用】

在四邊形ABCD中,ADBC,D=75°,BC=6,CD=5,AD=10(如圖5).

1)點EAD上,設t=BE+CE,求t2的最小值;

2)點FAB上,將BCF沿CF翻折,點B落在AD上的點G處,點GAD的中點嗎?說明理由.

【答案】【回顧】3;【探究】答案見解析;【應用】(186+25;(2)點G不是AD的中點.

【解析】試題分析:回顧:如圖1中,作AHBC.求出AH即可解決問題;

探究:如圖2中,根據(jù)S四邊形ABCD=BCABsin75°=2SABE+2SBFC+S矩形EFGH列出方程即可解決問題;

應用:1C關于AD的對稱點H,CHADJ,連接BH,EH.因為EC=EH,推出EB+EC=EB+EH,在EBH中,BE+EHBH,推出BE+EC的最小值為BH,求出BH即可解決問題;

2結論:點G不是AD的中點.理由反證法證明即可.

試題解析:解:由題意可知四邊形EFGH是矩形,AB=CD=2aAH=DH=BF=CF=b,EF=GH=ab,EH=FG=ba,BC=b

回顧如圖1中,作AHBC

RtABH中,∵∠B=30°AB=3,AH=ABsin30°=,SABC=BCAH=×4×=3,故答案為:3

探究:如圖3中,

由題意可知四邊形EFGH是矩形,AB=CD=2a,AH=DH=BF=CF=bEF=GH=ab,EH=FG=baBC=b,S四邊形ABCD=BCABsin75°=2SABE+2SBFC+S矩形EFGH

b2asin75°=2××a×a+2××b2+ab)(ba),2absin75°=ab+ab,sin75°=

如圖4中,

易知四邊形ABCD是平行四邊形,BAD=75°,S四邊形EFGH=2SABE+2SADF+S平行四邊形ABCD,a+b)(a+b═2××a×a+2××b2+b2asin75°,sin75°=

應用:1C關于AD的對稱點HCHADJ,連接BH,EH

RtDCJ中,JC=CDsin75°=,CH=2CJ=,在RtBHC中,BH2=BC2+CH2=36+=86+25,EC=EH,EB+EC=EB+EH,在EBH中,BE+EHBHBE+EC的最小值為BH,t=BE+CE,t2的最小值為BH2,即為86+25

2結論:點G不是AD的中點.

理由:作CJ⊥ADJ,DHCGH

不妨設AG=GD=5,CD=5DC=DG,DHCG,GH=CH=3,在RtCDH中,DH= ==4,SDGC=CGDH=DGCJ,CJ=,sinCDJ=∵∠CDJ=75°,sin75°=矛盾,假設不成立,G不是AD的中點.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如果一個分式的分子或分母可以因式分解,且這個分式不可約分,那么我們稱這

個分式為和諧分式”.

1)下列分式:;;;. 其中是和諧分式 (填寫序號即可);

2)若為正整數(shù),且和諧分式,請寫出的值;

3)在化簡時,

小東和小強分別進行了如下三步變形:

小東:

小強:

顯然,小強利用了其中的和諧分式, 第三步所得結果比小東的結果簡單,

原因是: ,

請你接著小強的方法完成化簡.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年母女兩人的年齡和為60歲,10年前母親的年齡是女兒的7倍,則今年母親、女兒的年齡各是多少歲?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點BE分別在AC、DF上,AF分別交BD、CE于點MN,∠A=∠F,∠1=∠2.

(1)求證:四邊形BCED是平行四邊形;

(2)已知DE=2,連接BN,若BN平分DBC,求CN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點A11),B3,2),將點A向左平移兩個單位,再向上平移4個單位得到點C

1)寫出點C坐標;

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的邊OAOC分別在x軸、y軸上,點B坐標為(4t)(t0),二次函數(shù)b0)的圖象經(jīng)過點B,頂點為點D

1)當t=12時,頂點Dx軸的距離等于 ;

2)點E是二次函數(shù)b0)的圖象與x軸的一個公共點(點E與點O不重合),求OEEA的最大值及取得最大值時的二次函數(shù)表達式;

3)矩形OABC的對角線OBAC交于點F,直線l平行于x軸,交二次函數(shù)b0)的圖象于點M、N,連接DM、DN,當DMN≌△FOC時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊A1C1C2的周長為1,作C1D1A1C2D1,在C1C2的延長線上取點C3,使D1C3=D1C1,連接D1C3,以C2C3為邊作等邊A2C2C3;作C2D2A2C3D2,在C2C3的延長線上取點C4,使D2C4=D2C2,連接D2C4,以C3C4為邊作等邊A3C3C4;且點A1,A2A3都在直線C1C2同側,如此下去,則A1C1C2,A2C2C3,A3C3C4,AnCnCn+1的周長和為______.(n≥2,且n為整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,線段AB和射線BM交于點B

1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法)

①在射線BM上作一點C,使AC=AB;

②作∠ABM 的角平分線交ACD點;

③在射線CM上作一點E,使CE=CD,連接DE.

2)在(1)所作的圖形中,猜想線段BDDE的數(shù)量關系,并證明之.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】據(jù)報導,我省農(nóng)作物秸桿的資源巨大,但合理利用量十分有限,2006年的利用率只有30%,大部分秸桿被直接焚燒了,假定我省每年產(chǎn)出的農(nóng)作物秸桿總量不變,且合理利用的增長率相同,要使2008年的利用率提高到60%,求每年的增長率。(取1.41)

查看答案和解析>>

同步練習冊答案