點P是Rt△ABC斜邊AB上的一點,PE⊥AC于E,PF⊥BC于F,BC=6,AC=8,則線段EF長的最小值為
4.8
4.8
分析:先由矩形的判定定理推知四邊形PECF是矩形;連接PC,則PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根據(jù)三角形的等積轉(zhuǎn)換即可求得PC的值.
解答:解:連接PC.
∵PE⊥AC,PF⊥BC,
∴∠PEC=∠PFC=90°,又∵∠ACB=90°,
∴四邊形ECFP是矩形,
∴EF=PC,
∴當PC最小時,EF也最小,即當CP⊥AB時,PC最小,
∵AC=8,BC=6,
∴AB=10,
1
2
AC•BC=
1
2
AB•PC,
∴PC=4.8.
∴線段EF長的最小值為4.8.
故答案為:4.8
點評:本題考查了勾股定理、矩形的判定與性質(zhì)、垂線段最短.利用“兩點之間垂線段最短”找出PC⊥AB時,PC取最小值是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

如圖所示,在Rt△ABC中,∠C=90°,∠A=35°,以直角頂點為旋轉(zhuǎn)中心,將△ABC旋轉(zhuǎn)到的位置,其中分別是A、B對應(yīng)點,且點B在斜邊上,直角邊交AB于D,這時∠BDC的度數(shù)是

[  ]

A.70°
B.90°
C.100°
D.105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:013

如圖所示,在Rt△ABC中,∠C=90°,∠A=35°,以直角頂點為旋轉(zhuǎn)中心,將△ABC旋轉(zhuǎn)到的位置,其中分別是A、B對應(yīng)點,且點B在斜邊上,直角邊交AB于D,這時∠BDC的度數(shù)是

[  ]

A.70°
B.90°
C.100°
D.105°

查看答案和解析>>

同步練習(xí)冊答案