(2012•湛江)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.
求證:(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.
分析:(1)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的對(duì)邊相等,對(duì)角相等,即可證得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;
(2)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形對(duì)邊平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可證得DE=BF,然后根據(jù)對(duì)邊平行且相等的四邊形是平行四邊形,即可證得四邊形BFDE是平行四邊形.
解答:證明:(1)∵四邊形ABCD是平行四邊形,
∴∠A=∠C,AB=CD,
在△ABE和△CDF中,
AB=CD
∠A=∠C
AE=CF
,
∴△ABE≌△CDF(SAS);

(2)∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∵AE=CF,
∴AD-AE=BC-CF,
即DE=BF,
∴四邊形BFDE是平行四邊形.
點(diǎn)評(píng):此題考查了平行四邊形的性質(zhì)與判定以及全等三角形的判定.此題難度不大,注意數(shù)形結(jié)合思想的應(yīng)用,注意熟練掌握定理的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湛江)如圖,設(shè)四邊形ABCD是邊長(zhǎng)為1的正方形,以對(duì)角線AC為邊作第二個(gè)正方形ACEF、再以對(duì)角線AE為邊作笫三個(gè)正方形AEGH,如此下去….若正方形ABCD的邊長(zhǎng)記為a1,按上述方法所作的正方形的邊長(zhǎng)依次為a2,a3,a4,…,an,則an=
2
n-1
2
n-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湛江)如圖,在半徑為13的⊙O中,OC垂直弦AB于點(diǎn)D,交⊙O于點(diǎn)C,AB=24,則CD的長(zhǎng)是
8
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湛江)如圖,在平面直角坐標(biāo)系中,直角三角形AOB的頂點(diǎn)A、B分別落在坐標(biāo)軸上.O為原點(diǎn),點(diǎn)A的坐標(biāo)為(6,0),點(diǎn)B的坐標(biāo)為(0,8).動(dòng)點(diǎn)M從點(diǎn)O出發(fā).沿OA向終點(diǎn)A以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā),沿AB向終點(diǎn)B以每秒
53
個(gè)單位的速度運(yùn)動(dòng).當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)動(dòng)點(diǎn)M、N運(yùn)動(dòng)的時(shí)間為t秒(t>0).
(1)當(dāng)t=3秒時(shí).直接寫出點(diǎn)N的坐標(biāo),并求出經(jīng)過O、A、N三點(diǎn)的拋物線的解析式;
(2)在此運(yùn)動(dòng)的過程中,△MNA的面積是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說明理由;
(3)當(dāng)t為何值時(shí),△MNA是一個(gè)等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湛江) 如圖,已知點(diǎn)E在直角△ABC的斜邊AB上,以AE為直徑的⊙O與直角邊BC相切于點(diǎn)D.
(1)求證:AD平分∠BAC;
(2)若BE=2,BD=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湛江)如圖所示的幾何體,它的主視圖是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案