【題目】某校在“我運(yùn)動(dòng),我快樂(lè)”的技能比賽培訓(xùn)活動(dòng)中,在相同條件下,對(duì)甲、乙兩名同學(xué)的“單手運(yùn)球”項(xiàng)目進(jìn)行了5次測(cè)試,測(cè)試成績(jī)(單位:分)如下:根據(jù)右圖判斷正確的是( )
A.甲成績(jī)的平均分低于乙成績(jī)的平均分;
B.甲成績(jī)的中位數(shù)高于乙成績(jī)的中位數(shù);
C.甲成績(jī)的眾數(shù)高于乙成績(jī)的眾數(shù);
D.甲成績(jī)的方差低于乙成績(jī)的方差.
【答案】D
【解析】
通過(guò)計(jì)算甲、乙的平均數(shù)可對(duì)A進(jìn)行判斷;利用中位數(shù)的定義對(duì)B進(jìn)行判斷;利用眾數(shù)的定義對(duì)C進(jìn)行判斷;根據(jù)方差公式計(jì)算出甲、乙的方差,則可對(duì)D進(jìn)行判斷.
甲的平均數(shù)=(分),乙的平均數(shù)==8(分),所以A選項(xiàng)錯(cuò)誤;
甲的中位數(shù)是8分,乙的中位數(shù)是9分,故B選項(xiàng)錯(cuò)誤;
甲的眾數(shù)是8分,乙的眾數(shù)是10分,故C選項(xiàng)錯(cuò)誤;
甲的方差=,乙的方差=,故D選項(xiàng)正確,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)稱軸為直線的拋物線與x軸相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(-3,0)。
(1)求點(diǎn)B的坐標(biāo);
(2)已知,C為拋物線與y軸的交點(diǎn)。
①若點(diǎn)P在拋物線上,且,求點(diǎn)P的坐標(biāo);
②設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長(zhǎng)度的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春季流感爆發(fā),有一人患了流感,經(jīng)過(guò)兩輪傳染后共有人患了流感,
(1)每輪傳染中平均一個(gè)人傳染了幾個(gè)人?
(2)經(jīng)過(guò)三輪傳染后共有多少人患了流感?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線C1:y=ax2+bx+1的頂點(diǎn)坐標(biāo)為D(1,0)且經(jīng)過(guò)點(diǎn)(0,1),將拋物線C1向右平移1個(gè)單位,向下平移1個(gè)單位得到拋物線C2,直線y=x+c,經(jīng)過(guò)點(diǎn)D交y軸于點(diǎn)A,交拋物線C2于點(diǎn)B,拋物線C2的頂點(diǎn)為P.
(1)求拋物線C1的解析式;
(2)如圖2,連結(jié)AP,過(guò)點(diǎn)B作BC⊥AP交AP的延長(zhǎng)線于C,設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動(dòng)點(diǎn),連結(jié)BQ并延長(zhǎng)交AC于點(diǎn)F,
①當(dāng)點(diǎn)Q運(yùn)動(dòng)到什么位置時(shí),S△PBD×S△BCF=8?
②連接PQ并延長(zhǎng)交BC于點(diǎn)E,試證明:FC(AC+EC)為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)投資1000萬(wàn)元引進(jìn)一條農(nóng)產(chǎn)品生產(chǎn)線,若不計(jì)維修、保養(yǎng)費(fèi)用,預(yù)計(jì)投產(chǎn)后每年可創(chuàng)330萬(wàn)元,該生產(chǎn)線投產(chǎn)后,從第一年到第x年的維修、保養(yǎng)費(fèi)用累計(jì)為y(萬(wàn)元),且y=ax2+bx(a≠0),若第一年的維修、保養(yǎng)費(fèi)為20萬(wàn)元,第二年的為40萬(wàn)元.
(1)求y與x之間的函數(shù)表達(dá)式;
(2)投產(chǎn)后,這個(gè)企業(yè)在第幾年就能收回投資?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,拋物線y=ax2+2ax+c與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.
(1)求拋物線的解析式;
(2)當(dāng)a>0時(shí),如圖所示,若點(diǎn)D是第三象限方拋物線上的動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m,三角形ADC的面積為S,求出S與m的函數(shù)關(guān)系式,并直接寫(xiě)出自變量m的取值范圍;請(qǐng)問(wèn)當(dāng)m為何值時(shí),S有最大值?最大值是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象與x軸相交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸相交于點(diǎn)C(0,3)
(1)求這個(gè)二次函數(shù)的表達(dá)式并直接寫(xiě)出頂點(diǎn)坐標(biāo);
(2)若P是第一象限內(nèi)這個(gè)二次函數(shù)的圖象上任意一點(diǎn),PH⊥x軸于點(diǎn)H,與BC交于點(diǎn)M,連接PC.設(shè)點(diǎn)P的橫坐標(biāo)為t
①求線段PM的最大值;
②S△PBM:S△MHB=1:2時(shí),求t值;
③當(dāng)△PCM是等腰三角形時(shí),直接寫(xiě)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,0)、B(3,2)、C(0,1)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).
(1)沿x軸向左平移2個(gè)單位,得到△A1B1C1,不畫(huà)圖直接寫(xiě)出發(fā)生變化后的點(diǎn)的坐標(biāo)。點(diǎn)的坐標(biāo)是 ;
(2)以A點(diǎn)為位似中心,在網(wǎng)格內(nèi)畫(huà)出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,則點(diǎn)的坐標(biāo)是 ;
(3) △A2B2C2的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD⊥BC于D,下列條件:①∠B+∠DAC=90°;②∠B=∠DAC;③=;④AB2=BDBC.其中一定能夠判定△ABC是直角三角形的有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com