如圖1,已知正方形ABCD的邊長為2
3
,點M是AD的中點,P是線段MD上的一動點(P不與M,D重合),以AB為直徑作⊙O,過點P作⊙O的切線交BC于點F,切點為E.
(1)除正方形ABCD的四邊和⊙O中的半徑外,圖中還有哪些相等的線段(不能添加字母和輔助線);
(2)求四邊形CDPF的周長;
(3)延長CD,F(xiàn)P相交于點G,如圖2所示.是否存在點P,使BF•FG=CF•OF?如果存在,試求此時AP的長;如果不存在,請說明理由.
(1)FB=FE,PE=PA.

(2)四邊形CDPF的周長為
FC+CD+DP+PE+EF=FC+CD+DP+PA+BF
=BF+FC+CD+DP+PA
=BC+CD+DA
=2
3
×3=6
3


(3)存在.
∵BF•FG=CF•OF
BF
OF
=
CF
FG

∵cos∠OFB=
BF
OF
,cos∠GFC=
CF
FG

∴∠OFB=∠GFC
∵∠OFB=∠OFE
∴∠OFE=∠OFB=∠GFC=60°
∴在Rt△OFB中,F(xiàn)E=FB=
OB
tan60°
=1
∴在Rt△GFC中
∵CG=CF•tan∠GFC=CF•tan60°=(2
3
-1)tan60°=6-
3

∴DG=CG-CD=6-3
3

∴DP=DG•tan∠PGD=DG•tan30°=2
3
-3
∴AP=AD-DP=2
3
-(2
3
-3)=3.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,P是⊙O外一點,PA切⊙O于點A,AB是⊙O的直徑,BCOP且交⊙O于點C,請準確判斷直線PC與⊙O是怎樣的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,A是⊙O上的一點,AC為⊙O的切線,AB為弦,若∠B=59°,則∠BAC=______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(l01l•瑤海區(qū)一模)如圖,在△七B5中,七B=七5,以七B為直徑的⊙O交B5于點D,過點D作EF⊥七5于點E,交七B的延長線于點F.
(1)求證:EF是⊙O的切線;
(l)當七B=5,B5=二時,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=
1
2
AB;
(3)點M是
AB
的中點,CM交AB于點N,若AB=4,求MN•MC的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

矩形的兩鄰邊長分別為2.5和5,若以較長一邊為直徑作半圓,則矩形的各邊與半圓相切的線段最多有( 。
A.0條B.1條C.2條D.3條

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC中,以AB為直徑的⊙O交AC于點D,∠DBC=∠BAC.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為2,∠BAC=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,P是半圓O的直徑BC延長線上一點,PA切半圓于點A,AH⊥BC于H,若PA=1,PB+PC=a(a>2),則PH等于( 。
A.
2
a
B.
1
a
C.
a
2
D.
a
3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,PA、PB是⊙O的切線,切點分別是A、B,若∠APB=60°,PA=4.求⊙O的半徑.

查看答案和解析>>

同步練習冊答案