【題目】如圖1,在中,于E,,D是AE上的一點,且,連接BD,CD.
試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系,并說明理由;
如圖2,若將繞點E旋轉(zhuǎn)一定的角度后,試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說明理由;
如圖3,若將中的等腰直角三角形都換成等邊三角形,其他條件不變.
試猜想BD與AC的數(shù)量關(guān)系,請直接寫出結(jié)論;
你能求出BD與AC的夾角度數(shù)嗎?如果能,請直接寫出夾角度數(shù);如果不能,請說明理由.
【答案】(1)見解析;(2)見解析;(3) ①BD=AC理由見解析;見解析.
【解析】
(1)可以證明△BDE≌△ACE推出BD=AC,BD⊥AC.
(2)如圖2中,不發(fā)生變化.只要證明△BED≌△AEC,推出BD=AC,∠BDE=∠ACE,由∠DEC=90°,推出∠ACE+∠EOC=90°,因為∠EOC=∠DOF,所以∠BDE+∠DOF=90°,可得∠DFO=180°-90°=90°,即可證明.
(3)①如圖3中,結(jié)論:BD=AC,只要證明△BED≌△AEC即可.
②能;由△BED≌△AEC可知,∠BDE=∠ACE,推出∠DFC=180°-(∠BDE+∠EDC+∠DCF)=180°-(∠ACE+∠EDC+∠DCF)=180°-(60°+60°)=60°即可解決問題.
解:,,
理由是:延長BD交AC于F.
,
,
在和中
≌,
,,
,
,
,
,
,
;
不發(fā)生變化.
如圖2,令AC、DE交點為O
理由:,
,
,
在和中
≌,
,,
,
,
,
,
,
;
(3);
證明:和是等邊三角形,
,,,,
,
,
在和中
≌,
.
②夾角為.
解:如圖3,令AC、BD交點為F,
由①知≌,
,
,即BD與AC所成的角的度數(shù)為或
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCO是平行四邊形,OA=2,AB=6,點C在x軸的負半軸上,將ABCO繞點A逆時針旋轉(zhuǎn)得到ADEF,AD經(jīng)過點O,點F恰好落在x軸的正半軸上,若點D在反比例函數(shù)y= (x<0)的圖象上,則k的值為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把△ABC紙片沿DE折疊,當點A落在四邊形BCDE內(nèi)部時,∠A與∠1、∠2之間的數(shù)量關(guān)系為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系中.
(1)作出△ABC關(guān)于軸對稱的,并寫出三個頂點的坐標: ( 。,( 。,( );
(2)直接寫出△ABC的面積為 ;
(3)在軸上畫點P,使PA+PC最小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求證:△ABC≌△AED;
(2)當∠B=140°時,求∠BAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校的復印任務(wù)原來由甲復印社承接,其收費y(元)與復印頁數(shù)x(頁)的關(guān)系如下表:
x(頁) | 100 | 200 | 400 | 1000 | … |
y(元) | 40 | 80 | 160 | 400 |
(1)若y與x滿足初中學過的某一函數(shù)關(guān)系,求函數(shù)的解析式;
(2)現(xiàn)在乙復印社表示:若學校先按每月付給200元的承包費,則可按每頁0.15元收費,則乙復印社每月收費y(元)與復印頁數(shù)x(頁)的函數(shù)關(guān)系為________________,
(3)學校準備復印材料1000頁,應(yīng)選擇哪個復印社比較優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,連接AC,BC,點D是BA延長線上一點,且AC=AD,若∠B=30°,AB=2,則CD的長是( )
A.
B.2
C.1
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解答
(1)7x(5x+2)=6(5x+2)
(2)關(guān)于x的一元二次方程x2+3x+m﹣1=0有兩個實數(shù)根,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com