已知:如圖①,在中,,,點(diǎn) 由出發(fā)沿方向向點(diǎn)勻速運(yùn)動,速度為1cm/s;點(diǎn)出發(fā)沿方向向點(diǎn)勻速運(yùn)動,速度為2cm/s;連接.若設(shè)運(yùn)動的時間為),解答下列問題:

(1)當(dāng)為何值時,?

(2)設(shè)的面積為),求之間的函數(shù)關(guān)系式;

(3)是否存在某一時刻,使線段恰好把的周長和面積同時平分?若存在,求出此時的值;若不存在,說明理由;

(4)如圖②,連接,并把沿翻折,得到四邊形,那么是否存在某一時刻,使四邊形為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.

 

【答案】

(1)  ……2分

(2)……3分

(3)不存在,若存在AP+AQ=6,此時t=1再驗(yàn)證面積為2.4,而三角形總面積為6,故不平分……3分

(4)連結(jié)PP,存在,……3分       邊長等于……3分

【解析】(1) 當(dāng)PQ//BC時,知三角形APQ相似三角形ABC,所以有2t :(5-t)=4:5 ,解得,t =10/ 7

(2)過P作PD垂直AC于D,則三角形APD相似三角形ABC,所以AP:AB=PD:BC

所以(5-t):5= PD:3 ,所以PD= 3(5-t)/5

 所以y= 1/2 2t3(5-t)/5  = -3/5 t2 +3t

(3) 把y= 6代入y= -3/5 t2 +3t

得 6 =-3/5 t2 +3t

 化簡得, t2 -5t+10=0

因△<0,所以此方程無解,所以這樣的時刻不存在

(4)過P作PD垂直BC,若四邊形PQP'C是菱形,則PD垂直平分QC,

所以AD= 4-(4-2t)/2  = 2+t   PD:BC=AP:AB   PD:3= (5-t):5,所以

PD=3(5-t)/5    因AD:AC=PD:BC  ,所以 (2+t):4 = 3(5-t)/5 :3

解得,t=  10/9      所以PD= 7/3 ,  QD= 2-t =8/9   ,利用勾股定理可求PQ

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、已知:如圖1,在⊙O中,弦AB=2,CD=1,AD⊥BD.直線AD,BC相交于點(diǎn)E.
(1)求∠E的度數(shù);
(2)如果點(diǎn)C,D在⊙O上運(yùn)動,且保持弦CD的長度不變,那么,直線AD,BC相交所成銳角的大小是否改變?試就以下三種情況進(jìn)行探究,并說明理由(圖形未畫完整,請你根據(jù)需要補(bǔ)全).
①如圖2,弦AB與弦CD交于點(diǎn)F;
②如圖3,弦AB與弦CD不相交;
③如圖4,點(diǎn)B與點(diǎn)C重合.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•歷下區(qū)一模)已知:如圖1,在DE上取一點(diǎn)A,以AD、AE為正方形的一邊在同一側(cè)作正方形ABCD和正方形AEFG,連接DG、BE,則線段DG、BE之間滿足DG=BE且DG⊥BE;

根據(jù)所給圖形完成以下問題的探索、證明和計(jì)算:
(1)如圖2,將正方形AEFG繞A點(diǎn)順時針旋轉(zhuǎn)α度,即∠BAG=α (0°<α<180°),那么(1)中的結(jié)論是否仍成立?若不成立請說明理由,若成立請給出證明.
(2)設(shè)正方形ABCD、AEFG的邊長分別是3和2,線段BD、DE、EG、GB所圍成封閉圖形的面積為S.當(dāng)α變化時,S是否有最大值?若有,求出S的最大值及相應(yīng)的α值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:如圖1,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,點(diǎn)E在AC上,CE=BC,過E點(diǎn)作AC的垂線,交CD的延長線于點(diǎn)F.求證:AB=FC.
(2)如圖2,已知△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(-2,3)、B(-6,0)、C(-1,0).
(1)請直接寫出點(diǎn)A關(guān)于y軸對稱的點(diǎn)的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時針旋轉(zhuǎn)90°.畫出圖形,直接寫出點(diǎn)B的對應(yīng)點(diǎn)的坐標(biāo);
(3)請直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們知道三角形的一條中線能將這個三角形分成面積相等的兩個三角形,反之,若經(jīng)過三角形的一個頂點(diǎn)引一條直線將這個三角形分成面積相等兩個三角形,那么這條直線平分三角形的這個頂點(diǎn)的對邊.如圖1,若S△ABD=S△ADC,則BD=CD成立.
請你直接應(yīng)用上述結(jié)論解決以下問題:

(1)已知:如圖2,AD是△ABC的中線,沿AD翻折△ADC,使點(diǎn)C落在點(diǎn)E,DE交AB于F,若△ADE與△ADB重疊部分面積等于△ABC面積的
1
4
,問線段AE與線段BD有什么關(guān)系?在圖中按要求畫出圖形,并說明理由.
(2)已知:如圖3,在△ABC中,∠ACB=90°,AC=2,AB=4,點(diǎn)D是AB邊的中點(diǎn),點(diǎn)P是BC邊上的任意一點(diǎn),連接PD,沿PD翻折△ADP,使點(diǎn)A落在E,若△PDE與△PDB重疊部分的面積等于△ABP面積的
1
4
,直接寫出BP2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

)已知:如圖11,在中,邊上的高,平分線. ,,

⑴求的度數(shù);

⑵求的度數(shù).

 


查看答案和解析>>

同步練習(xí)冊答案