如圖,AB為⊙O直徑,過弦AC的點(diǎn)C作CF⊥AB于點(diǎn)D,交AE所在直線于點(diǎn)F.
求證:AC2=AE•AF.

【答案】分析:要證明AC2=AE•AF,先把乘積的形式轉(zhuǎn)化為比例的形式,然后看看在哪兩個三角形中,看是不是能通過證明三角形的相似來證明.
解答:證明:延長CF交⊙O于G,連接AG、EG,
∵CF⊥AB于點(diǎn)D,AB為⊙O直徑,
∴AC=AG,∠C=∠AGC.
∵∠E=∠C,
∴∠AGC=∠E.
∵∠GAF=∠EAG,
∴△GAF∽△EAG.
∴AG:AE=AF:AG,AC:AE=AF:AC.
∴AC2=AE•AF.
點(diǎn)評:乘積的形式通?梢赞D(zhuǎn)化為比例的形式,通過相似三角形的性質(zhì)得出.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

6、如圖,AB為直徑,∠BED=40°,則∠ACD=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB為⊙O直徑,CD為弦,且CD⊥AB,垂足為H.
(1)∠OCD的平分線CE交⊙O于E,連接OE.求證:E為
ADB
的中點(diǎn);
(2)如果⊙O的半徑為1,CD=
3

①求O到弦AC的距離;
②填空:此時圓周上存在
 
個點(diǎn)到直線AC的距離為
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB為⊙O直徑,BC切⊙O于B,CO交⊙O交于D,AD的延長線交BC于E,若∠C=25°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB為⊙O直徑,BC切⊙O于B,CO交⊙O交于D,AD的延長線交BC于E,若∠C=20°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB為⊙O直徑,BC與半徑OD垂直于點(diǎn)C,∠B=28°,則∠A的度數(shù)為
31
31
度.

查看答案和解析>>

同步練習(xí)冊答案