【題目】如圖,矩形的周長是,且比長.若點從點出發(fā),以的速度沿方向勻速運動,同時點從點出發(fā),以的速度沿方向勻速運動,當一個點到達點時,另一個點也隨之停止運動.若設運動時間為,的面積為,則與之間的函數(shù)圖象大致是( )
A.B.
C.D.
科目:初中數(shù)學 來源: 題型:
【題目】隨著生活質量的提高,人們健康意識逐漸增強,安裝凈水設備的百姓家庭越來越多.某廠家從去年開始投入生產凈水器,生產凈水器的總量y(臺)與今年的生產天數(shù)x(天)的關系如圖所示.今年生產90天后,廠家改進了技術,平均每天的生產數(shù)量達到30臺.
(1)求y與x之間的函數(shù)表達式;
(2)已知該廠家去年平均每天的生產數(shù)量與今年前90天平均每天的生產數(shù)量相同,求廠家去年生產的天數(shù);
(3)如果廠家制定總量不少于6000臺的生產計劃,那么在改進技術后,至少還要多少天完成生產計劃?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+3與坐標軸分別交于點A,B(﹣3,0),C(1,0),點P是線段AB上方拋物線上的一個動點.
(1)求拋物線解析式;
(2)當點P運動到什么位置時,△PAB的面積最大?
(3)過點P作x軸的垂線,交線段AB于點D,再過點P作PE∥x軸交拋物線于點E,連接DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2-2mx+m2+m-1(m為常數(shù)).
(1)求證:不論m為何值,該二次函數(shù)的圖像與x軸總有兩個公共點;
(2)將該二次函數(shù)的圖像向下平移k(k>0)個單位長度,使得平移后的圖像經(jīng)過點(0,-2),則k的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】清代《修武縣志》有勝果寺的記載,“康熙五十二年三月十七日,塔頂現(xiàn)青白二氣如云,越二日乃止”,此文中的塔即為“勝果寺塔”,是修武作為“千年古縣”的標志性古建筑.為了測量塔的高度,某校數(shù)學興趣小組的兩名同學采用了如下方式進行測量.如圖,小明站在處,眼睛距離地面的高度為,測得塔頂的仰角為,小紅站在距離小明的處,眼睛距離地面的高度為,測得塔頂的仰角為,已知,,塔底在同一水平面上,由此即可求出塔高.你知道是怎么求的嗎?請寫出解題過程.(結果精確到.參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】要求在下列問題中僅用無刻度的直尺作圖.如圖,在下列10×12的網(wǎng)格中, 橫、縱坐標均為整數(shù)的點叫做格點.例如正方形ABCD的頂點A(0,7),C(5,2)都是格點.
(1)找一個格點M, 連接AM交邊CD于F,使DF=FC,畫出圖形寫出點M的坐標為 ;
(2)找一個格點N, 連接ON交邊BC于E,使BE=BC,畫出圖形寫出點N的坐標為 ;
(3)連接AE、EF得△AEF.請按步驟完成作圖,并寫出△AEF的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與反比例函數(shù)的圖象交于點,與軸交于點.
(1)求的值及點的坐標;
(2)過點作 軸交反比例函數(shù)的圖象于點,求點D的坐標和的面積;
(3)觀察圖象,寫出當x>0時不等式的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)yx的圖象與性質.
小亮根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)yx的圖象與性質進行了探究.
下面是小亮的探究過程,請補充完整:
(1)函數(shù)yx中自變量x的取值范圍是 ;
(2)下表是y與x的幾組對應值.
x | … | ﹣2 | ﹣1 | 0 | 1 |
|
|
|
| 3 | 4 | 5 | 6 | … |
y | … |
|
|
| 0 |
|
|
|
| m |
|
|
| … |
求m的值;
(3)在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)根據(jù)畫出的函數(shù)圖象,發(fā)現(xiàn)下列特征:
①該函數(shù)的圖象是中心對稱圖形,對稱中心的坐標是 ;
②該函數(shù)的圖象與過點(2,0)且平行于y軸的直線越來越靠近而永不相交,該函數(shù)的圖象還與直線 越來越靠近而永不相交.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com