如圖,在△ABC中,AB=1,AC=2,現(xiàn)將△ABC繞點C順時針旋轉(zhuǎn)90°得到△A′B′C′,連接AB′,并有AB′=3,則∠A′的度數(shù)為( 。
A、125°B、130°
C、135°D、140°
考點:旋轉(zhuǎn)的性質(zhì)
專題:
分析:如圖,作輔助線;首先證明∠AA′C=45°,然后證明AB′2=AA′2+A′B′2,得到∠AA′B′=90°,進而得到∠A′=135°,即可解決問題.
解答:解:如圖,連接AA′.由題意得:
AC=A′C,A′B′=AB,∠ACA′=90°,
∴∠AA′C=45°,AA′2=22+22=8;
∵AB′2=32=9,A′B′2=12=1,
∴AB′2=AA′2+A′B′2,
∴∠AA′B′=90°,∠A′=135°,
故選C.
點評:該題主要考查了旋轉(zhuǎn)變換的性質(zhì)、勾股定理的逆定理及其應(yīng)用問題;解題的關(guān)鍵是作輔助線,將分散的條件集中.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知如圖,AE∥BF,問∠APB與∠PAE,∠PBF有怎樣的關(guān)系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某市2013年全年商品房銷售面積約2596000平方米,用科學記數(shù)法表示為(  )平方米.
A、0.2596×107
B、2.596×106
C、2.596×107
D、25.96×105

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知:邊長相等的等邊△ABC和等邊△DEF重疊部分的周長是6.
(1)求證:△FGH和△CHL和△LEK和△KBJ和△JDI和△IAG都是等邊三角形.(或證明∠AGF=∠FHC=∠CLE=∠EKB=∠BJI=∠DIA=120°)
(2)求等邊△ABC的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,陽光透過長方形玻璃投射到地面上,地面上出現(xiàn)一個明亮的平行四邊形,楊陽用量角器量出了一條對角線與一邊垂直,用直尺量出平行四邊形的一組鄰邊的長分別是30cm,50cm,請你幫助楊陽計算出該平行四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)將半圓繞它的直徑旋轉(zhuǎn)一周形成的幾何體是
 

(2)將一副三角尺如圖所示放置,則∠α與∠β的數(shù)量關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是⊙O的直徑,弦CD⊥AB,若∠C=30°,CD=2
3
,則S陰影=( 。
A、π
B、2π
C、
2
3
π
D、
2
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知AB為⊙O直徑,CD平分∠ACB,AC=8,BC=6,則AD=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,下面表述不正確的是(  )
A、∠1可表示為∠DAC
B、∠2可表示為∠BAC
C、∠BAD表示的角是∠1+∠2
D、∠BAD可表示為∠A

查看答案和解析>>

同步練習冊答案