【題目】如圖,直線過軸上的點,且與拋物線相交于、兩點,點坐標(biāo)為.
求直線和拋物線所表示的函數(shù)表達式;
在拋物線上是否存在一點,使得?若不存在,說明理由;若存在,請求出點的坐標(biāo),與同伴交流.
【答案】設(shè)直線的表達式,; 點坐標(biāo)為,.
【解析】
(1)已知直線AB經(jīng)過A(2,0),B(1,1),設(shè)直線表達式為y=ax+b,可求直線解析式;將B(1,1)代入拋物線y=ax2可求拋物線解析式;
(2)已知A,B,C三點坐標(biāo),根據(jù)作差法可求△OBC的面積,在△DOA中,已知面積和底OA,可求OA上的高,即D點縱坐標(biāo),代入拋物線解析式求橫坐標(biāo),得出D點坐標(biāo).
設(shè)直線表達式為,
∵,都在的圖象上,
∴,
∴直線的表達式,
∵點在的圖象上,
∴,其表達式為;
∵,
解得或,
∴點坐標(biāo)為,設(shè),
∴,
∴,
∵,
∴,
即,
∴點坐標(biāo)為,.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,矩形ABCD中,AB=4,BC=m(m>1),點E是AD邊上一定點,且AE=1.
(1)當(dāng)m=3時,AB上存在點F,使△AEF與△BCF相似,求AF的長度.
(2)如圖②,當(dāng)m=3.5時.用直尺和圓規(guī)在AB上作出所有使△AEF與△BCF相似的點F.(不寫作法,保留作圖痕跡)
(3)對于每一個確定的m的值,AB上存在幾個點F,使得△AEF與△BCF相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列方程中,一元二次方程的個數(shù)是( 。
①3x2+7=0;②ax2+bx+c=0;③(x﹣2)(x+5)=x2﹣1;④3x2﹣=0.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象經(jīng)過點A(3,2)及B(1,6).
(1)求此一次函數(shù)的解析式;
(2)求此一次函數(shù)與坐標(biāo)軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用配方法求出拋物線的頂點坐標(biāo)、對稱軸、最大值或最小值;若將拋物線先向左平移個單位,再向上平移個單位,所得拋物線的函數(shù)關(guān)系式為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,正方形的中心在原點,且正方形的一組對邊與軸平行.點是反比例幽數(shù)的圖象上與正方形的一個交點,若圖中陰影部分的面積等于,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線與軸、軸分別交于,點,與的圖象交于、點,是點關(guān)于點的中心對稱點,于,若的面積與的面積之和為時,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,厘米,厘米,點從出發(fā),以每秒厘米的速度向運動,點從同時出發(fā),以每秒厘米的速度向運動,其中一個動點到端點時,另一個動點也相應(yīng)停止運動,那么,當(dāng)以、、為頂點的三角形與相似時,運動時間為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)的圖象經(jīng)過點,且與軸交點的橫坐標(biāo)分別為、,其中,,下列結(jié)論:
①;②;③;④.
其中正確的結(jié)論有________.(填寫正確結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com