【題目】如圖,二次函數(shù)的圖象過(guò)點(diǎn),對(duì)稱(chēng)軸為直線,給出以下結(jié)論:①;②;③:④若為函數(shù)圖象上的兩點(diǎn),則.其中正確的是(  )

A.①②④B.①②③C.①③④D.①②③④

【答案】B

【解析】

由拋物線的開(kāi)口方向判斷a0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c0的關(guān)系,然后根據(jù)對(duì)稱(chēng)軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.

解:∵拋物線開(kāi)口向下,
a0;
∵拋物線的對(duì)稱(chēng)軸為直線x=-=10,
b0
∵拋物線與y軸的交點(diǎn)在x軸上方,
c0
abc0,故①正確;
∵拋物線與x軸有兩個(gè)交點(diǎn),
b2-4ac0,故②正確;
∵拋物線的對(duì)稱(chēng)軸是x=1,與x軸的一個(gè)交點(diǎn)是(3,0),
∴拋物線與x軸的另個(gè)交點(diǎn)是(-10),
∴當(dāng)x=1時(shí),y最大,即a+b+c≥ax2+bx+c,故③正確;
Bx2+1y1)、Cx2+2y2)在對(duì)稱(chēng)軸右側(cè),x2+1x2+2,
y1y2,故④錯(cuò)誤;
故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y=﹣x+1與圖數(shù)y的限象交于A(﹣2,a),B兩點(diǎn).

1)寫(xiě)出a,k的值________

2)已知點(diǎn)P0,n),過(guò)點(diǎn)P作平行于x軸的直線l,交函數(shù)y的圖象于點(diǎn) Cx1 y1),交直線 y=﹣x+1的圖象于點(diǎn) Dx2,y2),若|x1|≤|x2|,結(jié)合函數(shù)圖象,請(qǐng)寫(xiě)出 m的取值范圍________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB=4EBC邊的中點(diǎn), FCD邊上的一點(diǎn), DF=1.若M、N分別是線段ADAE上的動(dòng)點(diǎn),則MN+MF的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校積極開(kāi)展“陽(yáng)光體育”活動(dòng),并開(kāi)設(shè)了跳繩、足球、籃球、跑步四種運(yùn)動(dòng)項(xiàng)目,為了解學(xué)生最喜愛(ài)哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(部分信息未給出).

1)求本次被調(diào)查的學(xué)生人數(shù);

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)該校共有3000名學(xué)生,請(qǐng)估計(jì)全校最喜愛(ài)籃球的人數(shù)比最喜愛(ài)足球的人數(shù)多多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】文昌西路改建工程指揮部要對(duì)某路段工程進(jìn)行招標(biāo),接到了甲、乙兩個(gè)工程隊(duì)的投標(biāo)書(shū).從投標(biāo)書(shū)中得知:甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)是乙隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)的;若由甲隊(duì)先做10天,剩下的工程再由甲、乙兩隊(duì)合作30天可以完成.

1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需要多少天?

2)已知甲隊(duì)每天的施工費(fèi)用為0.84萬(wàn)元,乙隊(duì)每天的施工費(fèi)用為0.56萬(wàn)元,工程預(yù)算的施工費(fèi)用為50萬(wàn)元.為縮短工期以減少對(duì)住戶(hù)的影響,擬安排甲、乙兩隊(duì)合作完成這項(xiàng)工程,則工程預(yù)算的施工費(fèi)用是否夠用?若不夠用,需追加預(yù)算多少萬(wàn)元?請(qǐng)給出你的判斷,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一個(gè)三角形紙片,其中分別是邊上的點(diǎn),連接

1)如圖,若將紙片的一角沿折疊,折疊后點(diǎn)落在邊上的點(diǎn)處,且使S四邊形ECBF,求的長(zhǎng);

2)如圖,若將紙片的一角沿折疊,折疊后點(diǎn)落在邊上的點(diǎn)處,且使.試判斷四邊形的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1A型鋼板可制成2C型鋼板和1D型鋼板;用1B型鋼板可制成1C型鋼板和3D型鋼板.現(xiàn)準(zhǔn)備購(gòu)買(mǎi)A、B型鋼板共100塊,并全部加工成C、D型鋼板.要求C型鋼板不少于120塊,D型鋼板不少于250塊,設(shè)購(gòu)買(mǎi)A型鋼板x塊(x為整數(shù)).

(1)求A、B型鋼板的購(gòu)買(mǎi)方案共有多少種?

(2)出售C型鋼板每塊利潤(rùn)為100元,D型鋼板每塊利潤(rùn)為120元.若將C、D型鋼板全部出售,請(qǐng)你設(shè)計(jì)獲利最大的購(gòu)買(mǎi)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtACB中,∠ABC90°,DBC邊的中點(diǎn),BEAD于點(diǎn)E,交ACF,若AB4,BC6,則線段EF的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC與△ABD中,∠CAB=∠DBAβ,且∠ADB+∠ACB180°

提出問(wèn)題:如圖1,當(dāng)∠ADB=∠ACB90°時(shí),求證:ADBC;

類(lèi)比探究:如圖2,當(dāng)∠ADB≠ACB時(shí),ADBC是否還成立?并說(shuō)明理由.

綜合運(yùn)用:如圖3,當(dāng)β18°,BC1,且ABBC時(shí),求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案