已知一個直角三角板PMN,∠MPN=30°,MN=2,使它的一邊PN與正方形ABCD的一邊AD重合(如圖放置在正方形內(nèi))把三角板繞點P旋轉(zhuǎn),使點M落在直線BC上一點F處,則CF的長為______________.

 

 

【答案】

.

【解析】

試題分析:本題考查了旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)、以及解直角三角形.解答此題的關(guān)鍵也是難點在于區(qū)分△PMN的頂點不在直線BC上和在在直線BC上兩種情況討論求解.解直角三角形求出正方形的邊長AD的長度,

由∠MPN=30°,MN=2,得AD=MN•cot∠MPN=2×cot30°=.然后分兩種情況:①點F在BC上,點N不在BC上時,根據(jù)旋轉(zhuǎn)的性質(zhì)可得AF=AM,利用“HL”證明Rt△ABF和Rt△ADM全等,進而可得BF=DM,從而得到CF=CM=CD-DM=;②點F、B都在直線BC上時,根據(jù)旋轉(zhuǎn)的性質(zhì)可得BF=MN=2,然后根據(jù)CF=BC+BF=.所以CF的長為.

考點:1、旋轉(zhuǎn)的性質(zhì);2、正方形的性質(zhì).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知一個直角三角板PMN,∠MPN=30°,MN=2,使它的一邊PN與正方形ABCD的一邊AD重合(如圖放置在正方形內(nèi))把三角板繞點P旋轉(zhuǎn),使點M落在直線BC上一點F處,則CF的長為
(2
3
-2)或(2
3
+2)
(2
3
-2)或(2
3
+2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年河南信陽市二中中考模擬考試數(shù)學(xué)試卷(解析版) 題型:填空題

 已知一個直角三角板PMN,∠MPN=30°,MN=2,使它的一邊PN與正方形ABCD的一邊AD重合(如圖放置在正方形內(nèi))把三角板繞點P旋轉(zhuǎn),使點M落在直線BC上一點F處,則CF的長為               .

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年河南省信陽市二中中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

已知一個直角三角板PMN,∠MPN=30°,MN=2,使它的一邊PN與正方形ABCD的一邊AD重合(如圖放置在正方形內(nèi))把三角板繞點P旋轉(zhuǎn),使點M落在直線BC上一點F處,則CF的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年河南省中考數(shù)學(xué)模擬試卷(七)(解析版) 題型:填空題

已知一個直角三角板PMN,∠MPN=30°,MN=2,使它的一邊PN與正方形ABCD的一邊AD重合(如圖放置在正方形內(nèi))把三角板繞點P旋轉(zhuǎn),使點M落在直線BC上一點F處,則CF的長為   

查看答案和解析>>

同步練習(xí)冊答案