【題目】a=0.32,b=32,c=;d=,則它們的大小關(guān)系是( 。

A. abcd B. badc C. adcb D. cadb

【答案】B

【解析】a=0.32=0.09,b=32=, ,

∵﹣,

∴b<a<d<c.

故選:B.

點(diǎn)睛: (1)此題主要考查了實(shí)數(shù)大小比較的方法,要熟練掌握,解答此題的關(guān)鍵是要明確:正實(shí)數(shù)>0>負(fù)實(shí)數(shù),兩個(gè)負(fù)實(shí)數(shù)絕對(duì)值大的反而小.

2)此題還考查了負(fù)整數(shù)指數(shù)冪的運(yùn)算,要熟練掌握,解答此題的關(guān)鍵是要明確:①ap=a≠0,p為正整數(shù));②計(jì)算負(fù)整數(shù)指數(shù)冪時(shí),一定要根據(jù)負(fù)整數(shù)指數(shù)冪的意義計(jì)算;③當(dāng)?shù)讛?shù)是分?jǐn)?shù)時(shí),只要把分子、分母顛倒,負(fù)指數(shù)就可變?yōu)檎笖?shù).(3)此題還考查了零指數(shù)冪的運(yùn)算,要熟練掌握,解答此題的關(guān)鍵是要明確:①a0=1a≠0);00≠1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是直線AB上任一點(diǎn),射線OD和射線OE分別平分∠AOC和∠BOC.

(1)與∠AOE互補(bǔ)的角是
(2)若∠AOC=72°,求∠DOE的度數(shù);
(3)當(dāng)∠AOC=x時(shí),請(qǐng)直接寫出∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)y=(m為常數(shù))的圖象在一、三象限.

(1)求m的取值范圍;

(2)如圖,若該反比例函數(shù)的圖象經(jīng)過(guò)ABOD的頂點(diǎn)D,點(diǎn)A、B的坐標(biāo)分別為(0,3),(2,0).

求出函數(shù)解析式;

設(shè)點(diǎn)P是該反比例函數(shù)圖象上的一點(diǎn),若OD=OP,則P點(diǎn)的坐標(biāo)為 ;若以D、O、P為頂點(diǎn)的三角形是等腰三角形,則滿足條件的點(diǎn)P的個(gè)數(shù)為 個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】AD是△ABC的角平分線且交BC于D,過(guò)點(diǎn)D作DE⊥AB于E,DF⊥AC于F,則下列結(jié)論不一定正確的是( )

A.DE=DF B.BD =CD C.AE=AF D.∠ADE=∠ADF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ACB=90°,AB=9,cosB=,把ABC繞著點(diǎn)C旋轉(zhuǎn),使點(diǎn)B與AB邊上的點(diǎn)D重合,點(diǎn)A落在點(diǎn)E,則點(diǎn)A、E之間的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2+x+a﹣1=0有一個(gè)根是1,求a的值及方程的另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,ACB=90°,D是斜邊AB上的中點(diǎn),E是邊BC上的點(diǎn),AE與CD交于點(diǎn)F,且AC2=CECB.

(1)求證:AECD;

(2)連接BF,如果點(diǎn)E是BC中點(diǎn),求證:EBF=EAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合運(yùn)用:

1)已知,求a2+的值.

2)已知a4+的小數(shù)部分,b是﹣+5的小數(shù)部分,c是(﹣+21的整數(shù)部分,求a2cb2c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P是半徑為10的圓O所在平面上的一點(diǎn),且點(diǎn)P到點(diǎn)O的距離為8.則過(guò)點(diǎn)P的直線l與圓O的位置關(guān)系為( 。

A. 相交B. 相切

C. 相離D. 相交、相切、相離都有可能

查看答案和解析>>

同步練習(xí)冊(cè)答案