【題目】如圖,在RtABCRtABD中,∠ABC=BAD=90°,AD=BC,AC,BD相交于點G,過點AAEDBCB的延長線于點E,過點BBFCADA的延長線于點FAE,BF相交于點H

1)圖中有若干對三角形是全等的,請你任選一對進行證明;(不添加任何輔助線)

2)證明:四邊形AHBG是菱形;

3)若使四邊形AHBG是正方形,還需在RtABC的邊長之間再添加一個什么條件?請你寫出這個條件.(不必證明)

【答案】(1)詳見解析;(2)詳見解析;(3需要添加的條件是AB=BC

【解析】試題分析:(1)可根據(jù)已知條件,或者圖形的對稱性合理選擇全等三角形,如△ABC≌△BAD,利用SAS可證明.

2)由已知可得四邊形AHBG是平行四邊形,由(1)可知∠ABD=BAC,得到△GAB為等腰三角形,AHBG的兩鄰邊相等,從而得到平行四邊形AHBG是菱形.

試題解析:

1)解:△ABC≌△BAD

證明:∵AD=BC,

ABC=BAD=90°

AB=BA,

∴△ABC≌△BADSAS).

2)證明:∵AHGB,BHGA

∴四邊形AHBG是平行四邊形.

∵△ABC≌△BAD,

∴∠ABD=BAC

GA=GB

∴平行四邊形AHBG是菱形.

3)需要添加的條件是AB=BC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(12分)某公交公司有A,B型兩種客車,它們的載客量和租金如下表:

紅星中學根據(jù)實際情況,計劃租用A,B型客車共5輛,同時送七年級師生到基地校參加社會實踐活動,設租用A型客車x輛,根據(jù)要求回答下列問題:

(1)用含x的式子填寫下表:

(2)若要保證租車費用不超過1900元,求x的最大值;

(3)在(2)的條件下,若七年級師生共有195人,寫出所有可能的租車方案,并確定最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點D、F、E、G都在ABC的邊上,EFAD,1=2BAC=70°,求∠AGD的度數(shù).(請在下面的空格處填寫理由或數(shù)學式)

解:∵EFAD,(已知)

∴∠2=      

∵∠1=2,(已知)

∴∠1=      

      ,(   

∴∠AGD+   =180°,(兩直線平行,同旁內角互補)

   ,(已知)

∴∠AGD=   (等式性質)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的直角坐標系中,解答下列問題:

(1)分別寫出A、B兩點的坐標;

(2)將△ABC向左平移3個單位長度,再向上平移5個單位長度,畫出平移后的△A1B1C1;

(3)求 △A1B1C1的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某商場為了吸引顧客,設立了一個可以自由轉動的轉盤,并規(guī)定:每購買500元商品,就能獲得一次轉動轉盤的機會,如果轉盤停止后,指針上對準500、200、100、50、10的區(qū)域,顧客就可以獲得500元、200元、100元、50元、10元的購物券一張(轉盤等分成20份)。

(1)小華購物450元,他獲得購物券的概率是多少?

(2)小麗購物600元,那么:

① 她獲得50元購物券的概率是多少?

② 她獲得100元以上(包括100元)購物券的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用直尺和圓規(guī)作一個角等于已知角的示意圖如下,則要說明∠D′O′C′=∠DOC,需要證明△D′O′C′≌△DOC,則這兩個三角形全等的依據(jù)是__寫出全等的簡寫).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店用6000元購進AB兩種新式服裝,按標價售出后可獲得毛利潤3800(毛利潤=售價-進價).這兩種服裝的進價,標價如表所示.

  

(1)求這兩種服裝各購進的件數(shù);

(2)如果A種服裝按標價的8折出售,B種服裝按標價的7折出售,那么這批服裝全部售完后,服裝店比按標價出售少收入多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖都是以為直角頂點的等腰直角三角形, 于點,若, ,當是直角三角形時,則的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖,小林同學想把一張矩形的紙沿對角線BD對折,對折后C點與C′點重合,BCAD相交于E,請你用尺規(guī)作圖的方法作出C′點,并保留作圖痕跡.

(2)如圖,已知在ABC中,∠ABC=3C,AD是∠BAC的平分線,BEADE,求證:BE=(AC-AB)

查看答案和解析>>

同步練習冊答案