【題目】如圖,拋物線y=ax22ax3a交x軸于點A、B(A左B右),交y軸于點C,SABC=6,點P為第一象限內拋物線上的一點.

(1)求拋物線的解析式;

(2)若PCB=45°,求點P的坐標;

(3)點Q為第四象限內拋物線上一點,點Q的橫坐標比點P的橫坐標大1,連接PC、AQ,當PC=AQ時,求點P的坐標以及PCQ的面積.

【答案】(1)y=x2+2x+3.(2)P(2,3);

(3).

【解析】

試題分析:(1)利用三角形的面積求出a即可得出拋物線解析式;

(2)先判斷出OBC=45°,而點P在第一象限,所以得出CPOB即:點P和點C的縱坐標一樣,即可確定出點P坐標;

(3)根據(jù)點P在第一象限,點Q在第二象限,且橫坐標相差1,進而設出點P(3m,m2+4m)(0<m<1);得出點Q(4m,m2+6m5),得出CP2,AQ2,最后建立方程求解即可.

試題解析:(1)拋物線y=ax22ax3a=a(x+1)(x3),

A(1,0),B(3,0),C(0,3a),

AB=4,OC=|3a|=|3a|,

SABC=6,

ABOC=6,

×4×|3a|=6,

a=1或a=1(舍),

拋物線的解析式為y=x2+2x+3;

(2)由(1)知,B(3,0),C(0,3a),

C(0,3),

OB=3,OC=3,

∴△OBC是等腰直角三角形,

∴∠BCO=OBC=45°

點P為第一象限內拋物線上的一點,且PCB=45°

PCOB,

P點的縱坐標為3,

由(1)知,拋物線的解析式為y=x2+2x+3,

令y=3,∴﹣x2+2x+3=3,

x=0(舍)或x=2,

P(2,3);

(3)如圖2,過點P作PDx軸交CQ于D,設P(3m,m2+4m)(0<m<1);

C(0,3),

PC2=(3m)2+(m2+4m3)2=(m3)2[(m1)2+1],

點Q的橫坐標比點P的橫坐標大1,

Q(4m,m2+6m5),

A(1,0).

AQ2=(4m+1)2+(m2+6m5)2=(m5)2[(m1)2+1]

PC=AQ,

81PC2=25AQ2,

81(m3)2[(m1)2+1]=25(m5)2[(m1)2+1],

0<m<1,

[(m1)2+1]0,

81(m3)2=25(m5)2

9(m3)=±5(m5),

m=或m=(舍),

P(,),Q(,),

C(0,3),

直線CQ的解析式為y=x+3,

P(,),

D(,),

PD=+=

SPCQ=SPCD+SPQD==PD×xP+=PD×(xQxP)==PD×xQ==××=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】y=1是方程my-4=2y-m的解,則m=_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各對數(shù)中,數(shù)值相等的是(
A.23和32
B.(﹣2)2和﹣22
C.2和|﹣2|
D.( 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a,b,c三個數(shù)的平均數(shù)是4,且a,b,c,d四個數(shù)的平均數(shù)是5,則d的值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a<0則-3a+2____0.(“>”“=”“<”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列是一名同學做的6道練習題:①(﹣3)0=1;②a3+a3=a6;③(﹣a5)÷(﹣a3)=﹣a2;④4m2= ;⑤(xy23=x3y6;⑥22+23=25 , 其中做對的題有(
A.1道
B.2道
C.3道
D.4道

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ACB=90°,A=30°,CD為ABC的中線,作COAB于O,點E在CO延長線上,DE=AD,連接BE、DE.

(1)求證:四邊形BCDE為菱形;

(2)把ABC分割成三個全等的三角形,需要兩條分割線段,若AC=6,求兩條分割線段長度的和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點坐標為(﹣3,6),且經(jīng)過點(﹣2,10),求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了解該校七年級學生的身高情況,抽樣調查了部分同學,將所得數(shù)據(jù)處理后,制成扇形統(tǒng)計圖和頻數(shù)分布直方圖(部分)如下(每組只含最低值不含最高值,身高單位:cm,測量時精確到1cm):

(1)請根據(jù)所提供的信息計算身高在160165cm范圍內的學生人數(shù),并補全頻數(shù)分布直方圖;

(2)樣本的中位數(shù)在統(tǒng)計圖的哪個范圍內?

(3)如果上述樣本的平均數(shù)為157cm,方差為0.8;該校八年級學生身高的平均數(shù)為159cm,方差為0.6,那么 (填“七年級”或“八年級”)學生的身高比較整齊.

查看答案和解析>>

同步練習冊答案