【題目】如圖,直線與x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為(

A.(﹣3,0) B.(﹣6,0) C.,0) D.,0)

【答案】C

【解析】

試題分析:作點D關(guān)于x軸的對稱點D′,連接CD′交x軸于點P,此時PC+PD值最小,如圖所示.

中x=0,則y=4,點B的坐標為(0,4);

中y=0,則,解得:x=﹣6,點A的坐標為(﹣6,0).

點C、D分別為線段AB、OB的中點,點C(﹣3,2),點D(0,2).

點D′和點D關(guān)于x軸對稱,點D′的坐標為(0,﹣2).

設直線CD′的解析式為y=kx+b,直線CD′過點C(﹣3,2),D′(0,﹣2),,解得:,直線CD′的解析式為

中y=0,則0=,解得:x=,點P的坐標為(,0).

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】今年5月,某大型商業(yè)集團隨機抽取所屬的部分商業(yè)連鎖店進行評估,將抽取的各商業(yè)連鎖店按照評估成績分成了、、四個等級,并繪制了如下不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)本次評估隨機抽取了多少家商業(yè)連鎖店?

(2)請補充完整扇形統(tǒng)計圖和條形統(tǒng)計圖,并在圖中標注相應數(shù)據(jù);

(3)從兩個等級的商業(yè)連鎖店中任選2家介紹營銷經(jīng)驗,求其中至少有一家是等級的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a、b、c、為△ABC的三邊長,a2+5b2﹣4ab﹣2b+1=0,且△ABC為等腰三角形,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是( )

A7a+a=8a2 B3x2y+2yx2=5x2y

C8y-6y=2 D3a+2b=5ab

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形紙片,AB=2,對折矩形紙片ABCD,使AD與BC重合,折痕為MN,展平后再過點B折疊矩形紙片,使點A落在MN上的點G處,折痕BE與MN相交于點H;再次展平,連接BG,EG,延長EG交BC于點F.有如下結(jié)論: ①EG=FG;②∠ABG=60°;③AE=1;④△BEF是等邊三角形;其中正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(﹣0.125)2016×82017=________;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個等腰三角形的兩邊長分別為3和7,這個三角形的周長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC三個頂點的坐標分別是A(2,2),B(4,0),C(4,﹣4).

(1)請在圖中,畫出ABC向左平移6個單位長度后得到的A1B1C1;

(2)以點O為位似中心,將ABC縮小為原來的,得到A2B2C2,請在圖中y軸右側(cè),畫出A2B2C2,并求出A2C2B2的正弦值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,對角線AC的垂直平分線交AD、BC于點E、F,AC與EF交于點O,連結(jié)AF、CE.
(1)求證:四邊形AFCE是菱形;
(2)若AB=3,AD=4,求菱形AFCE的邊長.

查看答案和解析>>

同步練習冊答案