【題目】已知:如圖,在四邊形ABCD中,AD∥BC,∠C=90°,AB=AD,連接BD,AE⊥BD,垂足為E.
(1)求證:△ABE∽△DBC;
(2)若 AD=25,BC=32,求線段AE的長.
【答案】(1)證明見解析;(2)15
【解析】
(1)由等腰三角形的性質可知∠ABD=∠ADB,由AD∥BC可知,∠ADB=∠DBC,由此可得∠ABD=∠DBC,又因為∠AEB=∠C=90°,所以可證△ABE∽△DBC;
(2)由等腰三角形的性質可知,BD=2BE,根據△ABE∽△DBC,利用相似比求BE,在Rt△ABE中,利用勾股定理求AE即可.
(1)證明:∵AB=AD=25,
∴∠ABD=∠ADB,
∵AD∥BC,
∴∠ADB=∠DBC,
∴∠ABD=∠DBC,
∵AE⊥BD,
∴∠AEB=∠C=90°,
∴△ABE∽△DBC;
(2)解:∵AB=AD,又AE⊥BD,
∴BE=DE,
∴BD=2BE,
由△ABE∽△DBC,
得 ,
∵AB=AD=25,BC=32,
∴ ,
∴BE=20,
∴AE==15.
科目:初中數學 來源: 題型:
【題目】如圖.在中,,,, 動點從點出發(fā)以每秒3個單位的速度運動至點,過點作交射線于點.設點的運動時間為秒.
(1)線段長為 .(用含的代數式表示)
(2)若與的面積比為1:4時, 求的值.
(3)設與重疊部分圖形的周長為, 求與之間的函數關系式.
(4)當直線把分成的兩部分圖形中有一個是軸對稱圖形時,直接寫出的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把一個量角器與一塊30°(∠CAB=30°)角的三角板拼在一起,三角板的斜邊AB與量角器所在圓的直徑MN重合,現(xiàn)有射線CP繞點C從CA開始沿順時針方向以每秒2°的速度旋轉到與CB重合,就停止旋轉.在旋轉過程中,射線CP與量角器的半圓弧交于E.連接BE.
(1)設旋轉x秒后,點E處的讀數為y°,則y與x的函數關系式________.
(2)當CP旋轉________秒時,△BCE是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的頂點A,B分別在y軸、x軸上,OA=2,OB=1,斜邊AC∥x軸.若反比例函數y(k>0,x>0)的圖象經過AC的中點D,則k的值為( )
A.4B.5C.6D.8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為測量觀光塔高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°.已知樓房高AB約是45m,請根據以上觀測數據求觀光塔的高.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“勤勞”是中華民族的傳統(tǒng)美德,學校要求同學們在家里幫助父母做一些力所能及的家務.在本學期開學初,小穎同學隨機調查了部分同學寒假在家做家務的總時間,設被調查的每位同學寒假在家做家務的總時間為x小時,將做家務的總時間分為五個類別:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并將調查結果制成如下兩幅不完整的統(tǒng)計圖:
根據統(tǒng)計圖提供的信息,解答下列問題:
(1)本次共調查了 名學生;
(2)請根據以上信息直接在答題卡中補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中m的值是 ,類別D所對應的扇形圓心角的度數是 度;
(4)若該校有800名學生,根據抽樣調查的結果,請你估計該校有多少名學生寒假在家做家務的總時間不低于20小時.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣6x﹣k2=0(k為常數).
(1)求證:方程有兩個不相等的實數根;
(2)設x1,x2為方程的兩個實數根,且x1+2x2=14,試求出方程的兩個實數根和k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,O為AC上一點,以點O為圓心,OC為半徑做圓,與BC相切于點C,點A作AD⊥BO交BO的延長線于點D,且∠AOD=∠BAD.
(1)求證:AB為⊙O的切線;
(2)若BC=6,tan∠ABC=,求⊙O的半徑和AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某書店銷售復習資料,已知每本復習資料進價為40元,市場調查發(fā)現(xiàn):若以每本50元銷售,平均每天可銷售90本,在此基礎上,若售價每提高1元,則平均每天少銷售3本.設漲價后每本的售價為元,書店平均每天銷售這種復習資料的利潤為元.
(1)漲價后每本復習資料的利潤為______元,平均每天可銷售______本;
(2)求與的函數關系式;
(3)當復習資料每本售價為多少時,平均每天的利潤最大?最大利潤為多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com