(2009•江蘇)如圖,已知二次函數(shù)y=x2-2x-1的圖象的頂點為A.二次函數(shù)y=ax2+bx的圖象與x軸交于原點O及另一點C,它的頂點B在函數(shù)y=x2-2x-1的圖象的對稱軸上.
(1)求點A與點C的坐標;
(2)當四邊形AOBC為菱形時,求函數(shù)y=ax2+bx的關(guān)系式.

【答案】分析:(1)二次函數(shù)y=ax2+bx的頂點在已知二次函數(shù)拋物線的對稱軸上,可知兩個函數(shù)對稱軸相等,因此先根據(jù)已知函數(shù)求出對稱軸. y=x2-2x-1=(x-1)2-2,所以頂點A的坐標為(1,-2)對稱軸為x=1,
所以二次函數(shù)y=ax2+bx關(guān)于x=1對稱,且函數(shù)與x軸的交點分別是原點和C點,
所以點C和點O關(guān)于直線l對稱,所以點C的坐標為(2,0);
(2)因為四邊形AOBC是菱形,根據(jù)菱形性質(zhì),可以得出點O和點C關(guān)于直線AB對稱,點B和點A關(guān)于直線OC對稱,因此,可求出點B的坐標,點B的坐標為(1,2),
二次函數(shù)y=ax2+bx的圖象經(jīng)過點B(1,2),C(2,0),將B,C代入解析式,可得,,
解得,所以二次函數(shù)y=ax2+bx的關(guān)系式為y=-2x2+4x.
解答:解:(1)∵y=x2-2x-1=(x-1)2-2,
∴頂點A的坐標為(1,-2).
∵二次函數(shù)y=ax2+bx的圖象與x軸交于原點O及另一點C,它的頂點B在函數(shù)y=x2-2x-1的圖象的對稱軸上.
∴二次函數(shù)y=ax2+bx的對稱軸為:直線x=1,
∴點C和點O關(guān)于直線x=1對稱,
∴點C的坐標為(2,0).

(2)因為四邊形AOBC是菱形,所以點B和點A關(guān)于直線OC對稱,
因此,點B的坐標為(1,2).
因為二次函數(shù)y=ax2+bx的圖象經(jīng)過點B(1,2),C(2,0),
所以,
解得
所以二次函數(shù)y=ax2+bx的關(guān)系式為y=-2x2+4x.
點評:本題主要考查利用二次函數(shù)和菱形的對稱性求有關(guān)的點,再用待定系數(shù)法求二次函數(shù)解析式,是難度中等的考題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年江蘇省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•江蘇)如圖,已知二次函數(shù)y=x2-2x-1的圖象的頂點為A.二次函數(shù)y=ax2+bx的圖象與x軸交于原點O及另一點C,它的頂點B在函數(shù)y=x2-2x-1的圖象的對稱軸上.
(1)求點A與點C的坐標;
(2)當四邊形AOBC為菱形時,求函數(shù)y=ax2+bx的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•江蘇)如圖,已知射線DE與x軸和y軸分別交于點D(3,0)和點E(0,4).動點C從點M(5,0)出發(fā),以1個單位長度/秒的速度沿x軸向左作勻速運動,與此同時,動點P從點D出發(fā),也以1個單位長度/秒的速度沿射線DE的方向作勻速運動.設(shè)運動時間為t秒.
(1)請用含t的代數(shù)式分別表示出點C與點P的坐標;
(2)以點C為圓心、t個單位長度為半徑的⊙C與x軸交于A、B兩點(點A在點B的左側(cè)),連接PA、PB.
①當⊙C與射線DE有公共點時,求t的取值范圍;
②當△PAB為等腰三角形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•江蘇)如圖,在航線l的兩側(cè)分別有觀測點A和B,點A到航線l的距離為2km,點B位于點A北偏東60°方向且與A相距10km處.現(xiàn)有一艘輪船從位于點B南偏西76°方向的C處,正沿該航線自西向東航行,5min后該輪船行至點A的正北方向的D處.
(1)求觀測點B到航線l的距離;
(2)求該輪船航行的速度(結(jié)果精確到0.1km/h).(參考數(shù)據(jù):≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•江蘇)如圖,AB是⊙O的直徑,弦CD∥AB.若∠ABD=65°,則∠ADC=    度.

查看答案和解析>>

同步練習(xí)冊答案