蔬菜的批發(fā)量(千克) | … | 25 | 60 | 75 | 90 | … |
所付的金額(元) | … | 125 | 300 | 300 | 360 | … |
分析 (1)根據(jù)這種蔬菜的批發(fā)量在20千克~60千克之間(含20千克和60千克)時,每千克批發(fā)價是5元,可得60×5=300元;若超過60千克時,批發(fā)的這種蔬菜全部打八折,則90×5×0.8=360元;
(2)把點(5,90),(6,60)代入函數(shù)解析式y(tǒng)=kx+b(k≠0),列出方程組,通過解方程組求得函數(shù)關(guān)系式;
(3)利用最大利潤=y(x-4),進而利用配方法求出函數(shù)最值即可.
解答 解:(1)由題意知:當(dāng)蔬菜批發(fā)量為60千克時:60×5=300(元),當(dāng)蔬菜批發(fā)量為90千克時:90×5×0.8=360(元),
填寫表格如下:
蔬菜的批發(fā)量(千克) | … | 25 | 60 | 75 | 90 | … |
所付的金額(元) | … | 125 | 300 | 300 | 360 | … |
點評 此題主要考查了待定系數(shù)法求一次函數(shù)解析式以及二次函數(shù)的應(yīng)用,根據(jù)銷售問題的相等關(guān)系得出W與x的函數(shù)關(guān)系式是解題關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | a<0 | B. | a>0 | C. | a≥0 | D. | 無法確定 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com