如圖表示一個正比例函數(shù)與一個一次函數(shù)的圖象,它們交于點A(4,3),一次函數(shù)的圖象與軸交于點B,且OA=OB,求這兩個函數(shù)的關(guān)系式及兩直線與軸圍成的三角形的面積.
    3.75
解:如圖,過點A作AC⊥軸于點C,

則AC=3,OC=4,所以O(shè)A=OB=5,
故B點坐標為(0,).
設(shè)直線AO的關(guān)系式為,因為其過點A(4,3),
,解得.所以.
設(shè)直線AB的關(guān)系式為,
因為其過點A(4,3)、B(0,),
解得:
所以關(guān)系式為.
,得,則D點坐標為(2.5,0).
所以兩直線與軸圍成的三角形AOD的面積為2.5×3÷2=3.75.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,O為坐標原點,點A的坐標為(0,4),點B的坐標為(4,0),點C的坐標為(-4,0),點P在射線AB上運動,連結(jié)CP與y軸交于點D,連結(jié)BD.過P,D,B三點作⊙Q與y軸的另一個交點為E,延長DQ交⊙Q于點F,連結(jié)EF,BF.

(1)求直線AB的函數(shù)解析式;
(2)當點P在線段AB(不包括A,B兩點)上時.
①求證:∠BDE=∠ADP;
②設(shè)DE=x,DF=y.請求出y關(guān)于x的函數(shù)解析式;
(3)請你探究:點P在運動過程中,是否存在以B,D,F(xiàn)為頂點的直角三角形,滿足兩條直角邊之比為2:1?如果存在,求出此時點P的坐標:如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=k1x+b(k1≠0)與雙曲線(k2≠0)相交于A(1,m)、B(-2,-1)兩點.求直線和雙曲線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=x-4x+3的圖象交x軸于A,B兩點(點A在點B的左側(cè)),              交y軸于點C.

(1)求直線BC的解析式;
(2)點D是在直線BC下方的拋物線上的一個動點,當△BCD的面積最大時,求D點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)的圖象經(jīng)過點(3,6)與點(,﹣),求這個函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為鼓勵居民節(jié)約用水,某市決定對居民用水收費實行“階梯價”,即當每月用水量不超過15噸時(包括15噸),采用基本價收費;當每月用水量超過15噸時,超過部分每噸采用市場價收費,小蘭家4、5月份的用水量及收費情況如下表:
月份
用水量(噸)
水費(元)
4
22
51
5
20
45
(1)分別求基本價和市場價.
(2)設(shè)每月用水量為n噸,應(yīng)繳水費為m元,請寫出m與n之間的函數(shù)關(guān)系式.
(3)小蘭家6月份的用水量為26噸,則她家要繳水費多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知一次函數(shù)的圖象經(jīng)過第一、二、三象限,則b的值可以是(     )
A.-1B.0C.2D.任意實數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)的圖象經(jīng)過點(,),且與正比例函數(shù)的圖象相交于點(4,),
求:(1)的值;
(2)、的值;
(3)求出這兩個函數(shù)的圖象與軸相交得到的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一批圖形計算器,原售價為每臺800元,在甲、乙兩家公司銷售.甲公司用如下方法促銷:買一臺單價為780元,買兩臺每臺都為760元.依次類推,即每多買一臺,則所買各臺單價均再減20元,但最低不能低于每臺440元;乙公司一律按原售價的75%促銷.某單位需購買一批圖形計算器:
(1)若此單位需購買6臺圖形計算器,應(yīng)去哪家公司購買花費較少?
(2)若此單位恰好花費7 500元,在同一家公司購買了一定數(shù)量的圖形計算器,請問是在哪家公司購買的,數(shù)量是多少?

查看答案和解析>>

同步練習(xí)冊答案