【題目】如圖.從下列四個條件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三個為條件,余下的一個為結論,則最多可以構成正確的結論的個數(shù)是(

A.1個
B.2個
C.3個
D.4個

【答案】B
【解析】解:當①②③為條件,④為結論時:
∵∠A′CA=∠B′CB,
∴∠A′CB′=∠ACB,
∵BC=B′C,AC=A′C,
∴△A′CB′≌△ACB,
∴AB=A′B′,
當①②④為條件,③為結論時:
∵BC=B′C,AC=A′C,AB=A′B′
∴△A′CB′≌△ACB,
∴∠A′CB′=∠ACB,
∴∠A′CA=∠B′CB.
故選B.
根據(jù)全等三角形的判定定理,可以推出①②③為條件,④為結論,依據(jù)是“SAS”;①②④為條件,③為結論,依據(jù)是“SSS”.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( 。

A. 兩個數(shù)的和一定比這兩個數(shù)的差大 B. 零減去一個數(shù),仍得這個數(shù)

C. 兩個數(shù)的差小于被減數(shù) D. 正數(shù)減去負數(shù),結果是正數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O的直徑是4,直線l與⊙O相切,則點O到直線l的距離為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,△ABC的三個頂點坐標分別為A(0,4),B(3,4),C(4,﹣1).
(1)試在平面直角坐標系中,畫出△ABC;

(2)若△A1B1C1與△ABC關于x軸對稱,寫出A1、B1、C1的坐標;
(3)在x軸上找到一點P,使點P到點A、B兩點的距離和最小;
(4)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:﹣233×|2|﹣(﹣7+52

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點E,F(xiàn)在BC上,EM垂直平分AB交AB于點M,F(xiàn)N垂直平分AC交AC于點N,∠EAF=90°,BC=12,EF=5.

(1)求∠BAC的度數(shù);
(2)求SEAF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了節(jié)約用水,我市自來水公司對水價作出規(guī)定:當每月用水量不超過5t時,每噸收費1.8元;當超過5t時,超過部分每噸收費3元.某個月一戶居民交水費36元,問這戶居民這個月用水多少t

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】m0時,請判斷關于x的一元二次方程x2+6x+m+90根的情況,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖

(1)填空:AB= , BC=;
(2)若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒3個單位長度和7個單位長度的速度向右運動.試探索:BC﹣AB的值是否隨著時間的變化而改變?請說明理由.

查看答案和解析>>

同步練習冊答案