【題目】計(jì)算下列各題:
(1)﹣|﹣1|+ cos30°﹣(﹣ 2+(π﹣3.14)0
(2)(x﹣y)2﹣(x﹣2y)(x+y)

【答案】
(1)解:﹣|﹣1|+ cos30°﹣(﹣ 2+(π﹣3.14)0

=﹣1+2 × ﹣4+1

=﹣1+3﹣4+1

=﹣1;


(2)解:(x﹣y)2﹣(x﹣2y)(x+y)

=x2﹣2xy+y2﹣x2+xy+2y2

=﹣xy+3y2


【解析】(1)先算絕對(duì)值,二次根式,特殊角的三角函數(shù)值,負(fù)整數(shù)指數(shù)冪,零指數(shù)冪,再相加即可求解;(2)先根據(jù)完全平方公式,多項(xiàng)式乘多項(xiàng)式的計(jì)算法則計(jì)算,再合并同類項(xiàng)即可求解.
【考點(diǎn)精析】通過靈活運(yùn)用零指數(shù)冪法則和整數(shù)指數(shù)冪的運(yùn)算性質(zhì),掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長線上,DC切⊙O于點(diǎn)C,若∠A=25°,則∠D等于(
A.20°
B.30°
C.40°
D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(6,0),點(diǎn)B(0,6),動(dòng)點(diǎn)C在以半徑為3的⊙O上,連接OC,過O點(diǎn)作OD⊥OC,OD與⊙O相交于點(diǎn)D(其中點(diǎn)C、O、D按逆時(shí)針方向排列),連接AB.
(1)當(dāng)OC∥AB時(shí),∠BOC的度數(shù)為
(2)連接AC,BC,當(dāng)點(diǎn)C在⊙O上運(yùn)動(dòng)到什么位置時(shí),△ABC的面積最大?并求出△ABC的面積的最大值;
(3)連接AD,當(dāng)OC∥AD時(shí),①求出點(diǎn)C的坐標(biāo);②直線BC是否為⊙O的切線?請(qǐng)作出判斷,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,斜邊AB=5厘米,BC=a厘米,AC=b厘米,a>b,且a、b是方程x2﹣(m﹣1)x+m+4=0的兩根,Rt△ABC的面積為平方厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題引入】 已知:如圖BE、CF是△ABC的中線,BE、CF相交于G.求證: = =

證明:連結(jié)EF
∵E、F分別是AC、AB的中點(diǎn)
∴EF∥BC且EF= BC
= = =
【思考解答】
(1)連結(jié)AG并延長AG交BC于H,點(diǎn)H是否為BC中點(diǎn)(填“是”或“不是”)
(2)①如果M、N分別是GB、GC的中點(diǎn),則四邊形EFMN 是四邊形. ②當(dāng) 的值為時(shí),四邊形EFMN 是矩形.
③當(dāng) 的值為時(shí),四邊形EFMN 是菱形.
④如果AB=AC,且AB=10,BC=16,則四邊形EFMN的面積S=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,D、E為⊙O上位于AB異側(cè)的兩點(diǎn),連接BD并延長至點(diǎn)C,使得CD=BD,連接AC交⊙O于點(diǎn)F,連接AE、DE、DF.
(1)證明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度數(shù);
(3)設(shè)DE交AB于點(diǎn)G,若DF=4,cosB= ,E是 的中點(diǎn),求EGED的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程與不等式組
(1)解方程:
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1 , y1),點(diǎn)Q的坐標(biāo)為(x2 , y2),且x1≠x2 , y1≠y2 , 若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”,如圖為點(diǎn)P,Q的“相關(guān)矩形”示意圖.
(1)已知點(diǎn)A的坐標(biāo)為(1,0), ①若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)A,B的“相關(guān)矩形”的面積;
②點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(2)⊙O的半徑為 ,點(diǎn)M的坐標(biāo)為(m,3),若在⊙O上存在一點(diǎn)N,使得點(diǎn)M,N的“相關(guān)矩形”為正方形,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2 , 對(duì)于以下結(jié)論:
①abc>0;②a+3b+2c≤0;③對(duì)于自變量x的任意一個(gè)取值,都有 x2+x≥﹣ ;④在﹣2<x<﹣1中存在一個(gè)實(shí)數(shù)x0 , 使得x0=﹣
其中結(jié)論錯(cuò)誤的是 (只填寫序號(hào)).

查看答案和解析>>

同步練習(xí)冊答案