【題目】如圖,一次函數(shù)y1=﹣x+4的圖象與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點(diǎn)
(1)觀察圖象當(dāng)y1>y2時(shí),x的取值范圍是 ;
(2)求反比例函數(shù)的解析式及B點(diǎn)坐標(biāo);
(3)求△OAB的面積.
【答案】(1)x<0或2<x<6;(2)y2=,(6,1);(3)8.
【解析】
(1)觀察函數(shù)圖象得到當(dāng)x<0或2<x<6時(shí),一次函數(shù)圖象在反比例函數(shù)圖象的上方;
(2)把A(2,3)代入y2=,利用待定系數(shù)法求反比例函數(shù)的解析式;將B(6,n)代入y1=﹣x+4可求出n的值,即可求出B點(diǎn)坐標(biāo);
(3)求得直線與x軸的交點(diǎn)坐標(biāo),根據(jù)三角形面積公式即可求得.
解:(1)根據(jù)圖象可知,當(dāng)y1>y2時(shí),x的取值范圍是x<0或2<x<6.
故答案為x<0或2<x<6;
(2)把A(2,3)代入y2=,得m=2×3=6,
∴反比例函數(shù)的解析式為y2=;
將B(6,n)代入y1=﹣x+4,
得n=﹣×6+4=1,
∴B點(diǎn)坐標(biāo)為(6,1);
(3)由直線y1=﹣x+4可知與x軸的交點(diǎn)為(8, 0),
又∵A(2,3),B(6,1),
∴S△AOB=×8×3﹣×8×1=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】6月14日是“世界獻(xiàn)血日”,某市采取自愿報(bào)名的方式組織市民義務(wù)獻(xiàn)血.獻(xiàn)血時(shí)要對(duì)獻(xiàn)血者的血型進(jìn)行檢測(cè),檢測(cè)結(jié)果有“A型”、“B型”、“AB型”、“O型”4種類(lèi)型.在獻(xiàn)血者人群中,隨機(jī)抽取了部分獻(xiàn)血者的血型結(jié)果進(jìn)行統(tǒng)計(jì),并根據(jù)這個(gè)統(tǒng)計(jì)結(jié)果制作了兩幅不完整的圖表:
血型 | A | B | AB | O |
人數(shù) |
| 10 | 5 |
|
(1)這次隨機(jī)抽取的獻(xiàn)血者人數(shù)為 人,m= ;
(2)補(bǔ)全上表中的數(shù)據(jù);
(3)若這次活動(dòng)中該市有3000人義務(wù)獻(xiàn)血,請(qǐng)你根據(jù)抽樣結(jié)果回答:
從獻(xiàn)血者人群中任抽取一人,其血型是A型的概率是多少?并估計(jì)這3000人中大約有多少人是A型血?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,線段EF在對(duì)角線AC上(E不與A重合,F不與C重合),EG⊥AD,FH⊥BC,垂足分別是G、H,且EG+FH=EF.
(1)寫(xiě)出圖中與△AEG相似的三角形;
(2)求線段EF的長(zhǎng);
(3)設(shè)EG=x,△AEG與△CFH的面積和為S,寫(xiě)出S關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍,并求出S的最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象過(guò)點(diǎn)A(3,0),C(﹣1,0).
(1)求二次函數(shù)的解析式;
(2)如圖,點(diǎn)P是二次函數(shù)圖象的對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),二次函數(shù)的圖象與y軸交于點(diǎn)B,當(dāng)PB+PC最小時(shí),求點(diǎn)P的坐標(biāo);
(3)在第一象限內(nèi)的拋物線上有一點(diǎn)Q,當(dāng)△QAB的面積最大時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B,C三點(diǎn)在⊙O上,直徑BD平分∠ABC,過(guò)點(diǎn)D作DE∥AB交弦BC于點(diǎn)E,在BC的延長(zhǎng)線上取一點(diǎn)F,使得EFDE.
(1)求證:DF是⊙O的切線;
(2)連接AF交DE于點(diǎn)M,若 AD4,DE5,求DM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D是BC的中點(diǎn),過(guò)D點(diǎn)的直線GF交AC于F,交AC的平行線BG于G點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請(qǐng)你判斷BE+CF與EF的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)在把一張正方形紙片按如圖方式剪去一個(gè)半徑為40厘米的圓面后得到如圖紙片,且該紙片所能剪出的最大圓形紙片剛好能與前面所剪的扇形紙片圍成一圓錐表面,則該正方形紙片的邊長(zhǎng)約為( 。├迕祝ú挥(jì)損耗、重疊,結(jié)果精確到1厘米,≈1.41,≈1.73)
A. 64 B. 67 C. 70 D. 73
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解放橋是天津市的標(biāo)志性建筑之一,是一座全鋼結(jié)構(gòu)的部分可開(kāi)啟的橋梁,
(I)如圖①,已知解放橋可開(kāi)啟部分的橋面的跨度AB等于47m,從AB的中點(diǎn)C處開(kāi)啟,則AC開(kāi)啟至A'C'的位置時(shí),A'C'的長(zhǎng)為 .
(II)如圖②,某校數(shù)學(xué)興趣小組要測(cè)量解放橋的全長(zhǎng)PQ,在觀景平臺(tái)M處測(cè)得∠PMQ=54°,沿河岸MQ前行,在觀景平臺(tái)N處測(cè)得∠PNQ=73°。已知PQ⊥MQ,MN=40m,求解放橋的全長(zhǎng)PQ(tan54°≈1.4,tan73°≈3.3,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知、,B為y軸上的動(dòng)點(diǎn),以AB為邊構(gòu)造,使點(diǎn)C在x軸上,為BC的中點(diǎn),則PM的最小值為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com