【題目】解放橋是天津市的標(biāo)志性建筑之一,是一座全鋼結(jié)構(gòu)的部分可開啟的橋梁,
(I)如圖①,已知解放橋可開啟部分的橋面的跨度AB等于47m,從AB的中點(diǎn)C處開啟,則AC開啟至A'C'的位置時(shí),A'C'的長(zhǎng)為 .
(II)如圖②,某校數(shù)學(xué)興趣小組要測(cè)量解放橋的全長(zhǎng)PQ,在觀景平臺(tái)M處測(cè)得∠PMQ=54°,沿河岸MQ前行,在觀景平臺(tái)N處測(cè)得∠PNQ=73°。已知PQ⊥MQ,MN=40m,求解放橋的全長(zhǎng)PQ(tan54°≈1.4,tan73°≈3.3,結(jié)果保留整數(shù))
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C,D在⊙O上,且點(diǎn)C是的中點(diǎn),過點(diǎn) C作AD的垂線 EF交直線 AD于點(diǎn) E.
(1)求證:EF是⊙O的切線;
(2)連接BC,若AB=5,BC=3,求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+4的圖象與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點(diǎn)
(1)觀察圖象當(dāng)y1>y2時(shí),x的取值范圍是 ;
(2)求反比例函數(shù)的解析式及B點(diǎn)坐標(biāo);
(3)求△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC.
(1)求AC的長(zhǎng);
(2)先將△ABC向右平移2個(gè)單位得到△A′B′C′,寫出A點(diǎn)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo);
(3)再將△ABC繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°后得到△A1B1C1,寫出A點(diǎn)對(duì)應(yīng)點(diǎn)A1的坐標(biāo).
(4)求點(diǎn)A到A′所畫過痕跡的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),頂點(diǎn)坐標(biāo)且開口向下,則下列結(jié)論:①拋物線經(jīng)過點(diǎn);②;③關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根;④對(duì)于任意實(shí)數(shù),總成立。其中結(jié)論正確的個(gè)數(shù)為( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直線l上,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到①,可得到點(diǎn)P1;將位置①的三角形繞點(diǎn)P1順時(shí)針旋轉(zhuǎn)到位置②,可得到點(diǎn)P2;將位置②的三角形繞點(diǎn)P2順時(shí)針旋轉(zhuǎn)到位置③,可得到點(diǎn)P3,…按此規(guī)律繼續(xù)旋轉(zhuǎn),直到點(diǎn)P2012為止,則AP2012等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為弓形AB的弦,AB=2,弓形所在圓⊙O的半徑為2,點(diǎn)P為弧AB上動(dòng)點(diǎn),點(diǎn)I為△PAB的內(nèi)心,當(dāng)點(diǎn)P從點(diǎn)A向點(diǎn)B運(yùn)動(dòng)時(shí),點(diǎn)I移動(dòng)的路徑長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖 1,在△ABC 中,∠ACB=90°,BC=AC,點(diǎn) D 在 AB 上,DE⊥AB交 BC 于 E,點(diǎn) F 是 AE 的中點(diǎn)
(1) 寫出線段 FD 與線段 FC 的關(guān)系并證明;
(2) 如圖 2,將△BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫出你的結(jié)論并證明;
(3) 將△BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)一周,如果 BC=4,BE=2,直接寫出線段 BF 的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸相交于A,B兩點(diǎn),點(diǎn)P是拋物線上一點(diǎn),且,.
求該拋物線的表達(dá)式;
設(shè)點(diǎn)為拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)M在曲線BA之間含端點(diǎn)移動(dòng)時(shí),求的最大值及取得最大值時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com