【題目】如圖,△ABC的三邊AB、BCCA長分別是20、3040,其三條角平分線將△ABC分為三個(gè)三角形,則SABOSBCOSCAO等于( )

A. 111

B. 123

C. 234

D. 345

【答案】C

【解析】

利用角平分線上的一點(diǎn)到角兩邊的距離相等的性質(zhì),可知三個(gè)三角形高相等,底分別是20,30,40,所以面積之比就是2:3:4.

本題主要考查三角形的角平分線。

三角形三條角平分線的交點(diǎn)為三角形的內(nèi)心,即本題中O點(diǎn)為△ABC的內(nèi)心,則O點(diǎn)到△ABC三邊的距離相等,設(shè)距離為r,有S△ABO= ×AB×r,S△BCO= ×BC×r,S△CAO= ×CA×r,所以S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4.

故答案選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點(diǎn)分別為D、E、F,∠A=80°,點(diǎn)P為⊙O上任意一點(diǎn)(不與E、F重合),則∠EPF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填在如圖各正方形中的四個(gè)數(shù)之間都有相同的規(guī)律,根據(jù)這種規(guī)律,m的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,經(jīng)過點(diǎn)A1(1,0)作x軸的垂線與直線l:y= x相交于點(diǎn)B1 , 以O(shè)為圓心,OB1為半徑畫弧與x軸相交于點(diǎn)A2;經(jīng)過點(diǎn)A2作x軸的垂線與直線l相交于點(diǎn)B2 , 以O(shè)為圓心、OB2為半徑畫弧與x軸相交于點(diǎn)A3;…依此類推,點(diǎn)A5的坐標(biāo)是( )

A.(8,0)
B.(12,0)
C.(16,0)
D.(32,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10m=5,10n=3,則102m+3n=   

【答案】675.

【解析】102m+3n=102m103n=(10m)2(10n)3=5233=675,

故答案為:675.

點(diǎn)睛:此題考查了冪的乘方與積的乘方, 同底數(shù)冪的乘法. 首先根據(jù)同底數(shù)冪的乘法法則,可得102m+3n=102m×103n,然后根據(jù)冪的乘方的運(yùn)算方法,可得102m×103n=(10m2×(10n3,最后把10m=5,10n=2代入化簡后的算式,求出102m+3n的值是多少即可.

型】填空
結(jié)束】
17

【題目】AB兩地相距450千米,甲、乙兩車分別從AB兩地同時(shí)出發(fā),相向而行.已知甲車的速度為100千米/時(shí),乙車的速度為80千米/時(shí),___________小時(shí)后兩車相距30千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).

(1)畫出與△ABC 關(guān)于 y 軸對稱的圖形△A1B1C1;

(2)寫出△A1B1C1 各頂點(diǎn)坐標(biāo);

(3)求△ABC 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c過點(diǎn)A(﹣3,0),對稱軸為x=﹣1.給出四個(gè)結(jié)論:①b2>4ac,②2a+b=0;③a﹣b+c=0;④5a<b.其中正確結(jié)論是(
A.②④
B.①④
C.②③
D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A、B分別在反比例函數(shù)y= (x>0),y=﹣ (x>0)的圖象上,且OA⊥OB,則tanB為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進(jìn)行星級(jí)提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬元,乙種套房費(fèi)用為700萬元.
(1)甲、乙兩種套房每套提升費(fèi)用各多少萬元?
(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級(jí)提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?
(3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費(fèi)用不會(huì)改變,每套甲種套房提升費(fèi)用將會(huì)提高a萬元(a>0),市政府如何確定方案才能使費(fèi)用最少?

查看答案和解析>>

同步練習(xí)冊答案