【題目】2011年長江中下游地區(qū)發(fā)生了特大旱情.為抗旱保豐收,某地政府制定了農(nóng)戶投資購買抗旱設(shè)備的補貼辦法,其中購買Ⅰ型、Ⅱ型抗旱設(shè)備投資的金額與政府補的額度存在下表所示的函數(shù)對應(yīng)關(guān)系.

(1)分別求y1和y2的函數(shù)解析式;
(2)有一農(nóng)戶同時對Ⅰ型、Ⅱ型兩種設(shè)備共投資10萬元購買,請你設(shè)計一個能獲得最大補貼金額的方案,并求出按此方案能獲得的最大補貼金額.

【答案】
(1)解:設(shè)y1=kx,將(5,2)代入得:

2=5k,

解得:k=0.4,

故y1=0.4x,

設(shè)y2=ax2+bx,將(2,2.4),(4,3.2)代入得:

解得:a=﹣0.2,b=1.6,

∴y2=﹣0.2x2+1.6x;


(2)解:假設(shè)投資購買Ⅰ型用x萬元、Ⅱ型為(10﹣x)萬元,

y=y1+y2=0.4x﹣0.2(10﹣x)2+1.6(10﹣x);

=﹣0.2x2+2.8x﹣4,

當x=﹣ =7時,y= =5.8萬元,

∴當購買Ⅰ型用7萬元、Ⅱ型為3萬元時能獲得的最大補貼金額,最大補貼金額為5.8萬元.


【解析】(1)觀察表中的相關(guān)數(shù)據(jù),將對應(yīng)的自變量和函數(shù)值代入相應(yīng)的函數(shù)解析式,即可求出分別求y1和y2的函數(shù)解析式。
(2)抓住已知條件有一農(nóng)戶同時對Ⅰ型、Ⅱ型兩種設(shè)備共投資10萬元,即y=y1+y2建立函數(shù)解析式,求出其頂點坐標,即可求得結(jié)論。
【考點精析】利用確定一次函數(shù)的表達式和二次函數(shù)的最值對題目進行判斷即可得到答案,需要熟知確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直線ABCD相交于點O,OEOC,OF平分∠AOE.

1)若,則∠AOF的度數(shù)為______;

2)若,求∠BOC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B,C,D的坐標分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點的三角形與△ABC相似,則點E的坐標不可能是( )

A.(4,0)
B.(6,2)
C.(6,3)
D.(4,5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CDABOE平分∠AOD,OFOEOGCD,∠CDO50°,則下列結(jié)論:

AOE65°;② OF平分∠BOD;③ GOE=∠DOF;④ AOE=∠GOD,其中正確結(jié)論的個數(shù)是(

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,點D是AC的中點,且∠A+∠CDB=90°,過點A,D作⊙O,使圓心O在AB上,⊙O與AB交于點E.

(1)求證:直線BD與⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:用2A型車和1B型車裝滿貨物一次可運貨10噸;用1A型車和2B型車裝滿貨物一次可運貨11噸.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車輛,B型車輛,一次運完,且恰好每輛車都裝滿貨物. 根據(jù)以上信息,解答下列問題:

11A型車和1B型車都裝滿貨物一次可分別運貨多少噸?

2)請你幫該物流公司設(shè)計租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在以下證明中的括號內(nèi)注明理由:

已知:如圖,EFCDF,GHCDH.求證:∠1=3

證明:∵EFCD,GHCD(已知),

EFGH   ).

∴∠1=2   ).

∵∠2=3   ),

∴∠1=3   ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于 x 的不等式-3x-m1.5 的整數(shù)解之和為 6,那么 m 的取值范圍是( )

A.無解B.2m3C.1.5m2.5D.2m2.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ ABCD中,點E、F在對角線BD上,且BEDF.

(1)求證:AECF

(2)求證:四邊形AECF是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案