(2010•金山區(qū)二模)在直角坐標平面內(nèi),O為原點,二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A(-1,0)和點B(0,3),頂點為P.
(1)求二次函數(shù)的解析式及點P的坐標;
(2)如果點Q是x軸上一點,以點A、P、Q為頂點的三角形是直角三角形,求點Q的坐標.

【答案】分析:(1)將A、B兩點坐標代入y=-x2+bx+c,解得b、c的值,再把解析式化為頂點坐標式,求出P點坐標;
(2)設(shè)點Q(x,0),由于根據(jù)圖形,A不可能為直角頂點,則分別討論P、Q為直角頂點時的情況.
解答:解:(1)由題意,得,(2分)
解得:b=2,c=3,(1分)
∴二次函數(shù)的解析式是y=-x2+2x+3,(1分)
變形為:y=-x2+2x+3=-(x-1)2+4,
∴點P的坐標是(1,4);(2分)

(2)P(1,4),A(-1,0),
∴AP2=20.(1分)
設(shè)點Q的坐標是(x,0),
則AQ2=(x+1)2,PQ2=(x-1)2+16,(1分)
當∠AQP=90°時,AQ2+PQ2=AP2,(x+1)2+(x-1)2+16=20,
解得x1=1,x2=-1(不合題意,舍去)
∴點Q的坐標是(1,0).(2分)
當∠APQ=90°時,AP2+PQ2=AQ2,20+(x+1)2+16=(x+1)2
解得x=9,
∴點Q的坐標是(9,0).(2分)
當∠PAQ=90°時,不合題意.
綜上所述,所求點Q的坐標是(1,0)或(9,0).
點評:本題考查了對二次函數(shù)解析式求解的掌握及函數(shù)與圖形相結(jié)合的綜合問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年上海市金山區(qū)中考數(shù)學二模試卷(解析版) 題型:選擇題

(2010•金山區(qū)二模)在平面直角坐標系中,將二次函數(shù)y=2x2的圖象向左平移3個單位,所得圖象的解析式為( )
A.y=2(x+3)2
B.y=2(x-3)2
C.y=2x2+3
D.y=2x2-3

查看答案和解析>>

科目:初中數(shù)學 來源:2010年上海市金山區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•金山區(qū)二模)如圖,在Rt△ABC中,∠C=90°,AC=BC,D是AB邊上一點,E是在AC邊上的一個動點(與點A、C不重合),DF⊥DE,DF與射線BC相交于點F.
(1)如圖2,如果點D是邊AB的中點,求證:DE=DF;
(2)如果AD:DB=m,求DE:DF的值;
(3)如果AC=BC=6,AD:DB=1:2,設(shè)AE=x,BF=y,
①求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
②以CE為直徑的圓與直線AB是否可相切?若可能,求出此時x的值;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年上海市金山區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•金山區(qū)二模)如圖,在△ABC中,點D、E分別在AB、AC上,連接BE、CD相交于點O.
(1)如果AB=AC,AD=AE,求證:OB=OC;
(2)在①OB=OC,②BD=CE,③∠ABE=∠ACD,④∠BDC=∠CEB四個條件中選取兩個個作為條件,就能得到結(jié)論“△ABC是等腰三角形”,那么這兩個條件可以是:______(只要填寫一種情況).

查看答案和解析>>

科目:初中數(shù)學 來源:2010年上海市金山區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•金山區(qū)二模)某校為了了解七年級學生每學期參加社會實踐活動次數(shù)的情況,隨機抽樣調(diào)查了該校七年級部分學生一個學期參加社會實踐活動次數(shù),下面是小明用得到的數(shù)據(jù)繪制了下面兩幅統(tǒng)計圖.

請你根據(jù)圖中提供的信息,回答下列問題:
(1)在扇形統(tǒng)計圖中一個學期參加9次社會實踐活動的學生所占的百分率是______;
(2)把圖補完整;
(3)在這次抽樣調(diào)查中“一個學期參加社會實踐活動的次數(shù)”的眾數(shù)是______;
(4)如果該校有七年級學生200人,估計“一個學期參加社會實踐活動次數(shù)至少6次”的大約有______人.

查看答案和解析>>

同步練習冊答案