【題目】在進(jìn)行二次根式化簡時(shí),我們有時(shí)會(huì)碰上如,,一樣的式子,其實(shí)我們還可以將其進(jìn)一步化簡:,,1,還可以用以下方法化簡:1.以上這種化簡的方法叫做分母有理化.(1)請化簡________;(2)a的小數(shù)部分則________;(3)矩形的面積為31,一邊長為2,則它的周長為________;(4)化簡.

【答案】1,(2,(3,(4.

【解析】

1)分子、分母同乘以最簡有理化因式,化簡即可;
2)由題意可得a=,代入分母有理化即可.
3)首先求另一邊長為:,化簡再按矩形的周長公式解答;
4)把各加數(shù)分母有理化,再加減即可.

解:(1)

(2),a的小數(shù)部分,

a=

3=;

(3)由題意得,另一邊長為:,

周長為:22=;

(4)原式=

.

故答案為:(1,(2,(3,(4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求解答下列各題:

(1)化簡:;

(2)解分式方程:

(3)已知關(guān)于x的方程有一個(gè)正數(shù)解,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售10臺(tái)A型和20臺(tái)B型電腦的利潤為4000元,銷售20臺(tái)A型和10臺(tái)B型電腦的利潤為3500元.

(1)求每臺(tái)A型電腦和B型電腦的銷售利潤;

(2)該商店計(jì)劃一次購進(jìn)兩種型號(hào)的電腦共50臺(tái),其中A型電腦的進(jìn)貨量不少于14臺(tái),B型電的進(jìn)貨量不少于A型電腦的2倍,那么該商店有幾種進(jìn)貨方案?該商場購進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤最大?

(3)實(shí)際進(jìn)貨時(shí),廠家對A型電腦出廠價(jià)下調(diào)m (0<m<100)元,若商店保持兩種電腦的售價(jià)不變,請你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這50臺(tái)電腦銷售總利潤最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明

如圖,FG//CD,∠1=∠3,∠B=50°,求BDE的度數(shù).

:∵FG//CD (已知)

∴∠2=_________(____________________________)

又∵∠1=∠3,

∴∠3=∠2(等量代換)

BC//__________(_____________________________)

∴∠B+________=180°(______________________________)

又∵∠B=50°

∴∠BDE=________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 把解集在數(shù)軸上表示,并求不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張長方形的紙條ABCD沿EF折疊,AD于點(diǎn)G,若折疊后

(1)求∠CEF的度數(shù);

(2)求證:EFG是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,AC,且滿足過點(diǎn)CCB軸于點(diǎn)B.

(1)

(2)軸上是否存在點(diǎn)P,使得三角形ABC和三角形ACP的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;

(3)如圖②,若過點(diǎn)BBDAC軸于點(diǎn)D,且AE、DE分別平分∠CAB、∠ODB,求∠AED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠C=90°,tanA=1,那么cosB等于( )
A.
B.
C.1
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:對于形如這樣的二次三項(xiàng)式,可以用公式法將它分解成的形式.但對于二次三項(xiàng)式,就不能直接運(yùn)用公式了.此時(shí),我們可以在二次三項(xiàng)式中先加上一項(xiàng),使它與的和成為一個(gè)完全平方式,再減去,整個(gè)式子的值不變,于是有:

像這樣,先添一適當(dāng)項(xiàng),使式中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變的方法稱為配方法,利用配方法",解決下列問題:

(1)分解因式:.

(2)比較代數(shù)式的大小.

查看答案和解析>>

同步練習(xí)冊答案